Конструкции лопаток турбин, технические требования к конструкциям, их классификация. Рабочие и направляющие лопатки турбины Лопатки турбины высокого давления

1. Угол установки профиля.

g уст = 68,7 + 9,33×10 -4 (b 1 - b 2) - 6,052 ×10 -3 (b 1 - b 2) 2

g уст кор. = 57,03°

g уст. ср. = 67,09°

g уст. пер. = 60,52°

2. Величина хорды профиля.

b Л.ср = S Л.ср / sin g уст.ср = 0,0381 / sin 67,09° = 0,0414 м;

b Л.корн = S Л.корн / sin g уст.корн = 0,0438 / sin 57,03° = 0,0522 м;

b Л.пер = S Л.пер / sin g уст.пер = 0,0347 / sin 60,52° = 0,0397 м;

S Л.корн =К S . корн ∙S Л.ср =1,15∙0,0381=0,0438 м 2 ;

S Л.пер =К S . пер ∙S Л.ср =0,91∙0,0381=0,0347 м 2 ;

3. Шаг охлаждаемой рабочей решетки.

= К т ∙

где , К Л = 0,6 – для рабочих лопаток

с учётом охлаждения

= К т ∙ =1,13∙0,541=0,611

где К т = 1,1…1,15

t Л.ср = b Л.ср ∙ =0,0414∙0,611=0,0253 м

Полученное значение t Л.ср следует уточнить, чтобы получить целое число лопаток в рабочей решетке, необходимое для прочностных расчетов элементов ТВД

5. Относительный радиус скругления выходной кромки лопаток выбирается в долях от шага решетки 2 = R 2 / t (величина 2ср в среднем сечении представлена в табл. 3). В корневых сечениях величина 2 увеличивается на 15…20%, в периферийных сечениях уменьшается на 10…15%.

Таблица 3

В нашем примере выбираем: 2ср = 0,07; 2корн = 0,084; 2пер = 0,06. Тогда радиусы скругления выходных кромок можно определить R 2 = 2 ∙t для расчетных сечений: R 2ср = 0,07 ∙ 0,0252 = 1,76 ∙ 10 -3 м; R 2корн = 0,084 ∙ 0,02323 = 1,95 ∙ 10 -3 м; R 2л.пер = 0,06 ∙ 0,02721 = 1,63 ∙ 10 -3 м.

6. Угол заострения выходной кромки охлаждаемых сопловых лопаток g 2с = 6…8°; рабочих – g 2л = 8…12°. Эти цифры в среднем в 1,5…2 раза больше, чем в неохлаждаемых лопатках. В нашем случае при профилировании рабочих лопаток назначаем g 2л = 10º во всех расчетных сечениях.

7). Конструктивный угол на выходе из сопловых лопаток a 1л = a 1см; на выходе из рабочих лопаток b 2л = b 2см + ∆b к, где среднего сечения Db к = 0;

для корневого Db к = + (1…1,5)°; для периферийного Db к = – (1...1,5)°, а a 1см, b 2см берутся из табл. 2. В нашем примере принимаем для рабочей решетки: Db к = 1,5º ; b 2л.ср = 32º18′ ; b 2л.кор = 36º5′; b 2л.пер = 28º00′ .

8). Угол отгиба выходного участка спинки профиля на среднем диаметре (затылочный угол) g зат = 6…20°: при М 2 £ 0,8 g зат = 14…20°; при М 2 » 1, g зат = 10…14°; при М W £ 1,35, g зат = 6…8°, где . В корневых сечениях g зат берется меньше указанных величин на 1…3°, в периферийных сечениях может достигать 30°.

В нашем примере для рабочей решетки в среднем сечении

,

поэтому выбираем g зат.л.ср = 18º; g зат.л.корн = 15º; g зат.л.пер = 28º.

Подвижная лопатка турбины высокого давления турбомашины содержит, по меньшей мере, один охлаждающий контур. Охлаждающий контур образован, по меньшей мере, одной полостью, проходящей радиально между вершиной и основанием лопатки, по меньшей мере, одним впускным отверстием для воздуха на одном радиальном конце полости или полостей для подачи охлаждающего воздуха в охлаждающий контур или контуры и несколькими выпускными щелями. Выпускные щели открыты в полость или полости и выходят на выходную кромку лопатки. Выпускные щели расположены по длине выходной кромки между основанием и вершиной лопатки и ориентированы по существу перпендикулярно продольной оси лопатки. По меньшей мере, одна выпускная щель, ближайшая к основанию пера лопатки, выполнена с наклоном к вершине лопатки под углом от 10° до 30° к оси вращения лопатки. Изобретение направлено на то, чтобы выпускная щель, ближайшая к основанию пера, не вызывала образования трещин. 2 н. и 3 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2297537

Область техники, к которой относится изобретение

Настоящее изобретение относится к широкой области подвижных (т.е. рабочих или роторных) лопаток турбомашины и, в более узком аспекте, к выпускным щелям для вывода охлаждающего воздуха, расположенным на выходной кромке подвижных лопаток турбины высокого давления.

Уровень техники

Как известно, турбомашина обычно содержит камеру сгорания, в которой воздух смешивается с топливом перед сгоранием смеси. Генерируемые при сгорании газы направляются к нижней по направлению потока части камеры и затем поступают к турбине высокого давления. Турбина высокого давления обычно содержит один или несколько рядов подвижных турбинных лопаток, расположенных по окружности на роторе турбины. Таким образом, подвижные лопатки турбины высокого давления подвергаются воздействию очень высоких температур газов сгорания. Эти температуры достигают значений, существенно превышающих температуры, которые способны выдерживать без повреждений подвижные лопатки, находящиеся в контакте с этими газами, что ограничивает долговечность подвижных лопаток.

Известен подход к решению данной проблемы путем снабжения лопаток внутренними контурами охлаждения, предназначенными для снижения температуры лопаток. При использовании подобных контуров охлаждающий воздух, как правило, подается внутрь лопатки через ее корневую часть (хвостовик), проходит через лопатку по траектории, определяемой полостями, сформованными внутри лопатки, и выводится через выпускные отверстия, выходящие на поверхность лопатки (см., например, патенты США №№6174134 и 6224336). Из патента США №6164913 (описывающего ближайший аналог настоящего изобретения) известно также, что выпускные отверстия для вывода охлаждающего воздуха в рабочей лопатке турбины могут представлять собой щели, распределенные вдоль выходной кромки пера лопатки между его основанием и вершиной и расположенные по существу перпендикулярно продольной оси лопатки.

Известно также, что лопатки турбины высокого давления, оснащенные контурами охлаждения, изготавливают способом литья или формования. Размещение щелей, в частности щелей контуров охлаждения, обычно обеспечивают с помощью стержней или сердечников, которые закладывают в форму параллельно друг другу перед заливкой металла. Для облегчения этой заливки металла выпускную щель для вывода охлаждающего воздуха, ближайшую к основанию пера лопатки, обычно выполняют больше по размерам, чем другие щели.

Однако на практике было установлено, что ближайшая к основанию пера лопатки выпускная щель плохо охлаждается. Из-за ее увеличенных размеров и из-за центробежной силы, создаваемой вращением лопатки, выходящий из этой выпускной щели воздух имеет тенденцию отклоняться к вершине лопатки. Это приводит к созданию вблизи выходной кромки лопатки значительных температурных градиентов, которые вызывают появление трещин на уровне этой щели, что особенно снижает долговечность лопатки. Эти высокие температурные градиенты имеют также тенденцию распространяться за счет теплопроводности к соединительной (переходной) зоне между основанием пера лопатки и ее полкой.

Сущность изобретения

Задача, на решение которой направлено настоящее изобретение, заключается в устранении указанных трудностей и создании подвижной (т.е. рабочей или роторной) лопатки турбины высокого давления с новой геометрией ближайшей к основанию пера лопатки выпускной щели для вывода охлаждающего воздуха, с тем чтобы эта щель не вызывала образования трещин. Изобретение направлено также на то, чтобы не ухудшать общей механической прочности лопатки - детали, которая подвергается очень высоким механическим напряжениям. Предметом изобретения является также турбина высокого давления, оснащенная такими подвижными лопатками.

В соответствии с изобретением решение поставленной задачи достигается за счет создания новой подвижной лопатки турбины высокого давления в турбомашине. Лопатка по изобретению содержит, по меньшей мере, один охлаждающий контур, который образован, по меньшей мере, одной полостью, проходящей радиально между вершиной и основанием лопатки, по меньшей мере, одним впускным отверстием для воздуха на одном радиальном конце полости или полостей для подачи охлаждающего воздуха в охлаждающий контур или контуры и несколькими выпускными щелями, открытыми в полость или полости и выходящими на выходную кромку лопатки. Указанные выпускные щели расположены по длине выходной кромки между основанием и вершиной лопатки и ориентированы по существу перпендикулярно продольной оси лопатки. Лопатка по изобретению характеризуется тем, что, по меньшей мере, одна выпускная щель, ближайшая к основанию пера лопатки, выполнена с наклоном к вершине лопатки под углом от 10° до 30° к оси вращения лопатки.

При этом охлаждающий воздух, выводимый через выпускную щель, ближайшую к основанию пера лопатки, направляется по всей поверхности данной щели таким образом, что устраняется образование трещин на уровне щели. Такая специальная геометрия данной щели позволяет снизить примерно на 5% локальную температуру на уровне этой щели. Кроме того, геометрия данной щели не ухудшает стойкость лопатки к различным механическим напряжениям, которым она подвергается.

В оптимальном варианте наклон выпускной щели, ближайшей к основанию пера лопатки, составляет примерно 20°.

Для снижения температуры переходной (соединительной) зоны между основанием пера лопатки и полкой, образующей перегородку для прохода потока газов сгорания через турбину высокого давления, передний по потоку конец выпускной щели, ближайшей к основанию пера лопатки, сформован по существу в этой переходной зоне. При этом острые углы переднего по потоку конца выпускной щели, ближайшей к основанию пера лопатки, зашлифованы для облегчения направления выводимого из выпускной щели воздуха к переходной зоне.

Перечень фигур чертежей

Пример осуществления настоящего изобретения, его дополнительные особенности и преимущества будут подробнее описаны ниже со ссылками на прилагаемые чертежи, на которых:

фиг.1 изображает в перспективе подвижную лопатку турбины высокого давления в соответствии с изобретением,

фиг.2 - это изображение в увеличенном масштабе части лопатки по фиг.1, иллюстрирующее выполнение выпускного отверстия (щели) для вывода охлаждающего воздуха, ближайшего к основанию пера лопатки.

Сведения, подтверждающие возможность осуществления изобретения

На фиг.1 представлена в перспективе подвижная лопатка 10 турбины высокого давления турбомашины. Эта лопатка, имеющая продольную ось Х-Х, укреплена на диске ротора (не представлен) турбины высокого давления посредством хвостовика 12, который обычно имеет елочный профиль. В общем случае лопатка имеет основание 14, вершину 16, переднюю входную кромку 18 и заднюю выходную кромку 20. Хвостовик 12 соединен с основанием 14 лопатки на уровне полки 22, которая образует перегородку для потока газов сгорания через турбину высокого давления.

Такая лопатка подвергается воздействию очень высоких температур газов сгорания и поэтому требует охлаждения. Для этого известным образом подвижная лопатка 10 содержит, по меньшей мере, один внутренний охлаждающий контур. Указанный охлаждающий контур состоит, например, по меньшей мере, из одной полости 24, которая проходит радиально между основанием 14 и вершиной 16 лопатки. В эту полость подается охлаждающий воздух на одном из ее радиальных концов через впускное отверстие (не показано). Это впускное отверстие обычно предусмотрено на уровне хвостовика 12 лопатки. Предусмотрены также несколько выпускных щелей 26, которые открыты в полость 24 и выходят на выходную кромку 20 лопатки для вывода охлаждающего воздуха, текущего в полости. Эти выпускные щели 26 для вывода охлаждающего воздуха обычно распределены вдоль выходной кромки 20 между основанием 14 и вершиной 16 пера лопатки и ориентированы по существу перпендикулярно продольной оси Х-Х лопатки.

На фиг.2 более четко показана геометрия выпускной щели 28, ближайшей к основанию 14 пера лопатки 10. Согласно изобретению ближайшая к основанию пера лопатки выпускная щель 28 выполнена с наклоном к вершине 16 лопатки под углом от 10° до 30° к оси вращения лопатки (не представлена). Предпочтительно угол наклона этой выпускной щели составляет 20°. Этот специфический угол наклона ближайшей к основанию пера лопатки выпускной щели позволяет выровнять температуру на уровне щели и за счет этого устранить все теплонапряженные места. Выводимый через эту выпускную щель охлаждающий воздух перекрывает практически всю поверхность выпускной щели 28 и снижает локальную температуру примерно на 5%. За счет этого полностью устраняется риск образования трещин на уровне выпускной щели, ближайшей к основанию пера лопатки, и повышается срок службы лопатки.

Согласно выгодной особенности изобретения передний по потоку конец 28а выпускной щели 28, ближайшей к основанию 14 пера лопатки, сформован по существу в переходной зоне 30 между основанием 14 пера лопатки и полкой 22 на стороне прохода потока газов сгорания. При этом выводимый через эту выпускную щель воздух имеет тенденцию за счет теплопроводности охлаждать переходную зону 30. Таким образом, температура переходной зоны 30 между основанием 14 пера лопатки и полкой 22 понижается примерно на 1,5%. Для усиления охлаждения переходной зоны 30 острые углы переднего по потоку конца 28а выпускной щели 28 зашлифованы для облегчения направления выводимого из выпускной щели воздуха к этой зоне 30. При этом, поскольку задний по потоку конец 28b ближайшей к основанию пера лопатки выпускной щели 28 не находится в соединительной зоне 30, эта специальная геометрия щели не влияет на стойкость лопатки 10 к различным механическим напряжениям.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Подвижная лопатка турбины высокого давления турбомашины, содержащая, по меньшей мере, один охлаждающий контур, который образован, по меньшей мере, одной полостью (24), проходящей радиально между вершиной (16) и основанием (14) лопатки (10), по меньшей мере, одним впускным отверстием для воздуха на одном радиальном конце полости или полостей для подачи охлаждающего воздуха в охлаждающий контур или контуры и несколькими выпускными щелями (26), открытыми в полость или полости и выходящими на выходную кромку (20) лопатки, причем выпускные щели расположены по длине выходной кромки между вершиной и основанием лопатки, по существу, перпендикулярно продольной оси (Х-Х) лопатки, отличающаяся тем, что, по меньшей мере, одна выпускная щель (28), ближайшая к основанию пера лопатки, выполнена с наклоном к вершине лопатки под углом от 10 до 30° к оси вращения лопатки.

2. Лопатка по п.1, отличающаяся тем, что наклон выпускной щели (28), ближайшей к основанию пера лопатки, составляет примерно 20°.

3. Лопатка по п.1 или 2, отличающаяся тем, что передний по потоку конец (28а) выпускной щели (28), ближайшей к основанию пера лопатки, сформован, по существу, в переходной зоне (30) между основанием пера лопатки и полкой (22), образующей перегородку для прохода потока газов сгорания через турбину высокого давления.

4. Лопатка по п.3, отличающаяся тем, что острые углы переднего по потоку конца (28а) выпускной щели (28), ближайшей к основанию пера лопатки, зашлифованы.

5. Турбина высокого давления турбомашины, отличающаяся тем, что она содержит несколько подвижных лопаток (10) по любому из предыдущих пунктов.

Лопатка - это рабочая деталь ротора турбины. Ступень надежно фиксируется под оптимальным углом наклона. Элементы работают под колоссальными нагрузками, поэтому к ним предъявляют самые жесткие требования по качеству, надежности и долговечности.

Применение и виды лопаточных механизмов

Лопаточные механизмы широко применяются в машинах различного назначения. Наиболее часто используют их в турбинах и компрессорах.

Турбина - ротационный двигатель, работающий под действием значительных центробежных сил. Основной рабочий орган машины - ротор, на котором по всему диаметру закреплены лопатки. Все элементы помещены в общий корпус специальной формы в виде нагнетающего и подающего патрубков или сопел. На лопатки подается рабочая среда (пар, газ или вода), приводя в движение ротор.

Таким образом, кинетическая энергия движущегося потока преобразуется в механическую энергию на валу.

Различают два основных вида турбинных лопаток:

  1. Рабочие - находятся на вращающих валах. Детали передают механическую полезную мощность на присоединенную рабочую машину (часто это генератор). Давление на рабочих лопатках остается постоянным благодаря тому, что направляющие лопатки всю разность энтальпий преобразуют в энергию потока.
  2. Направляющие - закреплены в корпусе турбины. Данные элементы частично преобразуют энергию потока, благодаря чему вращение колес получает тангенциальное усилие. В турбине разница энтальпий должна быть понижена. Это достигается путем уменьшения числа ступеней. Если установить слишком много направляющих лопаток, то срыв потока будет угрожать ускоренному потоку турбины.

Методы изготовления турбинных лопаток

Турбинные лопатки изготавливают методом литья по выплавляемым деталям из высококачественного металлопроката. Используют полосу, квадрат, допускается применение штампованных заготовок. Последний вариант предпочтителен на крупных производствах, так как коэффициент использования металла достаточно высок, а трудозатраты - минимальны.

Лопасти турбин проходят обязательную термическую обработку. Поверхность покрывается защитными составами против развития коррозионных процессов, а также специальными составами, повышающие прочность механизма при работе в условиях высокой температуры. Например, никелевые сплавы практически не поддаются механической обработке, поэтому методы штамповки для производства лопаток не подходят.

Современные технологии подарили возможность производства турбинных лопаток методом направленной кристаллизации. Это позволило получить рабочие элементы с такой структурой, которую практически невозможно сломать. Внедряется метод изготовления монокристальной лопасти, то есть из одного кристалла.

Этапы производства турбинных лопаток:

  1. Литье или поковка. Литье позволяет получать лопатки высокого качества. Поковка производиться по спец заказу.
  2. Механическая обработка. Как правило, для механической обработки применяются токарно-фрезерные автоматизированные центры, например, японский комплекс Mazak или же на фрезерные обрабатывающие центра, такие как MIKRON швейцарского производства.
  3. В качестве финишной обработки применяют только шлифование.

Требования к лопаткам турбин, применяемые материалы

Лопатки турбины эксплуатируются в условиях агрессивной среды. Особо критична высокая температура. Детали работают под напряжением на растяжение, поэтому возникают высокие деформирующие усилия, растягивающие лопатки. Со временем детали касаются корпуса турбины, машина блокируется. Все это обуславливает применение материалов высочайшего качества для изготовления лопаток, способные выдерживать значительные нагрузки при крутящем моменте, а также любые усилия в условиях высокого давления и температуры. Качеством лопаток турбины оценивается общая эффективность агрегата. Напомним, что высокая температура необходима для повышения КПД машины, работающей по циклу Карно.

Лопатки турбины - ответственный механизм. Благодаря нему обеспечивается надежность работы агрегата. Выделим основные нагрузки во время работы турбины:

  • Возникают большие окружные скорости в условиях высокой температуры в паровом или газовом потоке, которые растягивают лопатки;
  • Формируются значительные статические и динамические температурные напряжения, не исключая и вибрационные нагрузки;
  • Температура в турбине достигает 1000-1700 градусов.

Все это предопределяет применение высококачественных жаропрочных и нержавеющих сталей для производства лопаток турбин.

Например, могут быть использованы такие марки как 18Х11МФНБ-ш, 15Х11МФ-ш, а также различные сплавы на основе никеля (до 65%) ХН65КМВЮБ.

В качестве легирующих элементов в состав такого сплава дополнительно вводят следующие компоненты: 6% алюминия, 6-10% вольфрама, тантала, рения и немного рутения.

Лопаточный механизм должен обладать определенной теплостойкостью. Для этого в турбине делают сложные системы охлаждающих каналов и выходных отверстий, которые обеспечивают создание воздушной пленки на поверхности рабочей или направляющей лопатки. Раскаленные газы не касаются лопасти, поэтому происходит минимальный нагрев, но сами газы не остывают.

Все это повышает КПД машины. Охлаждающие каналы формируются при помощи керамических стержней.

Для их производства применяют оксид алюминия, температура плавления которого достигает 2050 градусов.

Турбина (рисунок 2.13) – осевая, двухступенчатая, состоит из одноступенчатой ТВД и одноступенчатой ТНД. Обе турбины имеют охлаждаемые воздухом сопловые и рабочие лопатки. На пониженных дроссельных режимах работы с целью повышения экономичности двигателя выполнено частичное отключение охлаждения турбины.

Основные параметры и материалы деталей турбины приведены, соответственно, в таблицах 2.3 и 2.4.

Таблица 2.3 - Основные данные турбины

Параметр

Значения

Степень понижения полного давления газа

КПД турбины по параметрам заторможенного потока

Окружная скорость, м/с.

Частота вращения ротора, об/мин.

Втулочное отношение

Температура газа на входе в турбину

Таблица 2.4 - Материалы деталей турбины

Таблица 2.4 - Продолжение

ЭП-868-Ш (Средняя часть) ВТ-9

Рисунок 2.13 – Турбина АЛ-31Ф

2.5.2 Конструкция турбины высокого давления

Турбина высокого давления предназначена для привода компрессора вы­сокого давления и агрегатов, установленных на коробках приводов двигатель­ных и самолетных агрегатов. Турбина состоит из ротора и статора.

Ротор турбины (рисунок 2.14) состоит из рабочих лопаток 1, диска 2, цапфы 3 и вала 4.

Рисунок 2.14 – Ротор ТВД

Рабочая лопатка (рисунок 2.15) – литая, полая с циклонно-вихревой схемой охлаждения. Во внутренней полости, с целью организации течения охлаждающего воздуха, предусмотрены ребра, перегородки и турбулизаторы.

Профильная часть лопатки (1) отделена от замка (2) полкой (3) и удлиненной

ножкой (4). Полки лопаток, стыкуясь, образуют коническую оболочку, защищающую замковую часть лопатки от перегрева. Удлиненная ножка, обладая относительно низкой изгибной жесткостью, обеспечивает снижение уровня вибрационных напряжений в профильной части лопатки. Трехзубый замок (5) «ёлочного» типа обеспечивает передачу радиальных нагрузок с лопаток на диск. Зуб (6), выполненный в левой части замка, фиксирует лопатку от перемещения ее по потоку, а паз (7) совместно с элементами фиксации обеспечивает удержание лопатки от перемещения против потока (рисунок 2.16).

Рисунок 2.15 – Рабочая лопатка ТВД

Рисунок 2.16 – Осевая фиксация рабочих лопаток ТВД

1-Вырезы; 2-диск; 3-лопатка; 4-пластинчатый замок

Осевая фиксация рабочей лопатки осуществляется зубом и пластинчатым замком. Пластинчатый замок (один на две лопатки) (8)вставляется в пазы лопаток в трех местах диска (9), где сделаны вырезы, и разгоняется по всей окружности лопаточного венца. Пластинчатые замки, устанавливаемые в месте расположения вырезов в диске, имеют особую форму. Эти замки монтируются в деформированном состоянии, а после выпрямления входят в пазы лопаток. При выпрямлении пластинчатого замка лопатки поддерживают с противоположных торцов.

Для снижения уровня вибрационных напряжений в рабочих лопатках между ними под полками размещают демпферы, имеющие коробчатую конструкцию (рисунок 2.17). При вращении ротора под действием центробежных силдемпферы прижимаются к внутренним поверхностям полок вибрирующих лопаток. За счет трения в местах контакта двух соседних полок об один демпферэнергия колебаний лопаток будет рассеиваться, что и обеспечит снижениеуровня вибрационных напряжений в лопатках.

Рисунок 2.17 - Демпфер

Диск (рисунок 2.18) турбины штампованный, с последующей механической обработкой. В периферийной части диска выполнены пазы «елочного» типа для крепления 90 рабочих лопаток, канавки (1) для размещения пластинчатых замков осевой фиксации лопаток и наклонные отверстия (2) подвода воздуха, охлаждающего рабочие лопатки. Воздух отбирается из ресивера, образованного двумя буртиками, левой боковой поверхностью диска и аппаратом закрутки. На правой плоскости полотна диска выполнены буртик (3) лабиринтного уплотнения и буртик (4), используемый при демонтаже диска. В ступичной плоской части диска выполнены цилиндрические отверстия (5) под призонные болты, соединяющие вал, диск и цапфу ротора турбины.

Рисунок 2.18 – Диск ТВД

Балансировка ротора осуществляется грузиками (2.19), закрепляемыми в проточке буртика диска и зафиксированными замком. Хвостовик замка загибается на балансировочный грузик.

Рисунок 2.19 – Узел крепления балансировочного груза ротора

Цапфа (1) (рисунок 2.20) обеспечивает опирание ротора о роликовый подшипник. Левым фланцем цапфа центрируется и соединяется с диском турбины.

На наружных цилиндрических проточках цапфы размещены втулки (2) лабиринтных уплотнений. Осевая и окружная фиксация втулок осуществляется радиальными штифтами (3). Для предотвращения выпадания штифтов под воздействием центробежных сил после их запрессовки отверстия во втулках завальцовываются.

На наружной части хвостовика цапфы, ниже втулок лабиринтного уплотнения, размещено контактное уплотнение (рисунок 2.21), зафиксированное корончатой гайкой. Гайка законтрена пластинчатым замком.

Внутри цапфы в цилиндрических поясках центрируются втулки контактного и лабиринтного уплотнений. Втулки удерживаются корончатой гайкой, ввернутой в резьбу цапфы. Гайка законтривается отгибом усиков коронки в торцевые прорези цапфы. Контактное уплотнение показано на рисунок 2.22.

Рисунок 2.20 – Цапфа ТВД

Рисунок 2.21 – Узел контактного уплотнения

1-втулка; 2-графитовые кольца; 3-цапфа; 4-корончатая гайка

Рисунок 2.22 – Узел контактного уплотнения

1-стальные втулки; 2-дистанционная втулка; 3-пружина; 4-графитовые кольца

Статор турбины высокого давления состоит (рисунок 2.23) из наружногокольца (1), блока сопловых лопаток (2), внутреннего кольца (3), аппарата закрутки(4), устройства стабилизации радиального зазора (5), клапанного аппарата и воздухо-воздушного теплообменника (6).

Рисунок 2.23 – Статор ТВД

Наружное кольцо (рисунок 2.24) – цилиндрическая оболочка с фланцем, расположенным между корпусом камеры сгорания и корпусом турбины. В левой части кольца на винтах 1 присоединены оболочки 2, являющиеся опорами жаровой трубы 3 камеры сгорания и обеспечивающие подвод охлаждающего воздуха на наружные полки лопаток соплового аппарата. В правой части кольца подвешено устройство 4 обеспечения радиального зазора.

Рисунок 2.24 – Наружное кольцо статора ТВД

Лопатки соплового аппарата объединены в 14 трехлопаточных блоков. Наружные полки блоков лопаток установлены в пазах наружногокольца и закреплены винтами. Лопаточные блоки литые, с вставными и припаянными в двух местах дефлекторами, с припаянной нижней полкой-цапфой. Для предотвращения перетечек газа стыки между блоками сопловых лопаток уплотнены металлическими пластинами, установленными в прорезях на торцах полок первой и третьей лопаток каждого блока.

Внутреннее кольцо (рисунок 2.25) выполнено в виде оболочки с втулками и фланцами, к которым приварена коническая диафрагма. На внешней стороне кольца (1) расположены четырнадцать втулок (2) для центрирования его на цапфах (3) блоков сопловых лопаток. Крышка (4) служит для образования полости охлаждающего воздуха. На левом фланце внутреннего кольца (1) винтами (5) присоединены оболочки (6), на которые опирается жаровая труба (7). Они же обеспечивают подвод вторичного воздуха от ОКС, охлаждающего внутренние полки лопаток соплового аппарата.

На правом фланце (4) приварен аппарат (8) закрутки (рисунок 2.26), представляющий собой сварную оболочковую конструкцию. Аппарат закрутки предназначен для подачи и охлаждения воздуха, идущего к рабочим лопаткам за счет разгона и закрутки по направлению вращения турбины. Для повышения жесткости внутренней оболочки к ней приварены три подкрепляющих профиля (9). Разгон и закрутка охлаждающего воздуха происходит в сужающейся части аппарата закрутки.

Рисунок 2.25 – Внутреннее кольцо статора ТВД

Рисунок 2.26 – Сопловой аппарат устройства закрутки воздуха ТВД

Устройство стабилизации радиального зазора (рисунок 2.27) предназначено для повышения КПД турбины на повышенных режимах. Оно представляет собой кольцо, тепловое состояние которого, а следовательно, и диаметр стабилизирован охлаждением. При увеличении режима, когда диаметр ротора увеличивается за счет разогрева лопаток и диска и их растяжения под действием центробежных сил, величина радиального зазора уменьшается, что приводит к снижению перетекания через зазор и повышению КПД турбины. На кольце "С"-образными секторами закреплены вставки с сотами, выполненными электроэрозией. В окружном направлении вставки зафиксированы радиальными штифтами. При касании лопаток о вставки происходит взаимный износ, что и предотвращает разрушение лопаток.

Рисунок 2.27 – Узел устройства, регулирующего радиальный зазор

1 – штифт; 2 – жиклер; 3 – кольцо; 4 - «С» образный элемент; 5 – вставка; 6 – соты; 7 - экран

Лопаточный аппарат турбины состоит из неподвижных направ­ляющих и подвижных рабочих лопаток и предназначен для наи­более полного и экономичного преобразования потенциальной энергии пара в механическую работу. Направляющие лопатки, установленные в корпусе турбины, образуют каналы, в которых пар приобретает необходимую скорость и направление. Рабочие лопатки, расположенные на дисках или барабанах ротора тур­бины, находясь под действием давления пара, возникающего в ре­зультате изменения направления и скорости его струи, приводят вал турбины во вращение. Та­ким образом, лопаточный ап­парат является наиболее от­ветственной частью турбины, от которого зависит надеж­ность и экономичность ее ра­боты.

Рабочие лопатки имеют разнообразную конструкцию. Нa рис. 17 показана лопатка простого типа, состоящая из трех частей: хвоста или нож­ки 2, с помощью которых ло­патку крепят в ободе диска 1 , рабочей части 4 , находящейся под действием движущейся струи пара, и вершины 6 для закрепления ленточного бан­дажа 5, которым связывают лопатки с целью создания до­статочной жесткости и обра­зования канала между ними. Между ножками лопаток устанав­ливают промежуточные тела 3. Чтобы предотвратить возникнове­ние температурных напряжений при прогреве и охлаждении тур­бины, бандажом связывают отдельные группы лопаток, оставляя зазор между бандажами 1-2 мм.

Задняя сторона лопатки называется спинкой; грань со стороны входа пара называется входной кромкой, а грань со стороны вы­хода пара - выходной кромкой лопатки. Поперечное сечение ло­патки в пределах ее рабочей части называется профилем лопатки. По профилю различают активные и реактивные лопатки (рис. 18). Угол? 1 называется входным, а угол? 2 - выходным углом ло­патки. У активных лопаток турбин прежней постройки (рис. 18, а) профиль почти симметричный, т. е. входной угол мало отличается от выходного. В реактивных лопатках (рис. 18, б ) профиль несим­метричный, выходной угол значительно меньше входного. Для повышения эффективности работы лопаток входные кромки профи­лей закругляют, а каналы, образованные профилями, выполняют сходящимися. Современные профили активной и реактивной ло­паток с обтекаемой входной кромкой показаны на рис. 18, в и г .

Основные характеристики профиля лопаток следующие:

Средняя линия профиля - геометрическое место центров окружностей, вписанных в профиль;

Геометрические углы: входа? 1 л - угол между касательной к средней линии при входе и осью решетки; ? 2 л - то же при вы­ходе;

Углы входа и выхода потока пара: ? 1 - угол между направ­лением потока пара при входе на рабочую лопатку и осью; ? 2 - то же при выходе;

Угол атаки i - угол между направлением потока пара при входе на рабочую лопатку и касательной к входной кромке по средней ЛИНИИ, Т. е. i = ? – ? 1 ;

Хорда профиля b - расстояние между концами средней линии;

Угол установки? У - угол между хордой профиля и осm. решетки;

Ширина профиля В - размер лопатки по направлению оси турбины;

Шаг t - расстояние между сходственными точками соседних профилей.

Входная кромка современных профилей направляющих и ра­бочих лопаток малочувствительна к отклонению угла потока на входе. Это позволяет при расчете профиля лопатки допустить углы атаки до 3-5° в любом сечении по высоте лопатки. Входную кромку профилей лопаток при дозвуковой скорости делают тол­стой и тщательно закругляют, что снижает вихревые потери на входе в канал и повышает вибрационную, коррозионную и эрози­онную стойкость лопаток. Такая форма входной кромки обеспе­чивает на переменных режимах меньшее влияние изменения угла атаки на к. п. д. лопатки, а также более полное использование входной энергии ступеней.

Геометрические характеристики активных и реактивных про­филей рабочих и направляющих лопаток приводится в нормалях для лопаток судовых турбин (табл. 1, 2).

Размеры лопаток колеблются в широких пределах. В судовых турбинах высота лопаток первых ступеней ТВД небольшая (от 10 мм), а последних ступеней ТВД достигает 400 мм. Ширина ло­паток может быть 14-60 мм. Для уменьшения веса и снижения напряжений от центробежных сил длинным лопаткам придают ширину и толщину, постепенно уменьшающуюся от ножки к вер­шине. На длинных лопатках бандаж обычно не ставят, а для по­лучения большей жесткости лопатки скрепляют связной проволо­кой в пакеты по 5-10 лопаток.

По способу изготовления лопатки можно разделить на две группы:

1) изготовленные штамповкой из листового материала (тол­щиной 1-2 мм) или из прокатанных профильных полос (светло- катаных профилей); промежуточные вставки для этих лопаток выполняются отдельно;

2) изготовленные как одно целое с промежуточными встав­ками путем фрезерования катаных, тянутых, кованых или литых заготовок.

На рис. 17 показаны лопатки, выполненные из прокатанных профильных полос с отдельными вставками. Механическая обра­ботка таких лопаток сводится к фрезерованию ножки и вершины. Эти лопатки имеют постоянный профиль и применяются для не­больших окружных скоростей. Для повышенных окружных скоро­стей используют полуфрезерованные лопатки из более толстых хо­лоднокатаных профильных полос. В таких лопатках вставка ча­стично выполняется заодно с ними и спинка фрезеруется.

Па рис. 19 изображены различные конструкции цельнофрезерованных лопаток, изготовленных совместно со вставками из горяче­катаной полосовой стали прямоугольного и ромбического сечений. Перевязка лопаток (рис. 19, а) осуществляется бандажной лентой. Для больших окружных скоростей лопатку изготовляют как одно целое с бандажной полкой (рис. 19, б ). Смыкаясь, полки образуют сплошное кольцо-бандаж. Как уже отмечалось выше, ширина и толщина длинных лопаток постепенно уменьшается от ножки к вершине (рис. 19, в). Для обеспечения безударного входа пара по всей высоте длинные лопатки иногда выполняют с пере­менным профилем, у которых угол входа постепенно увеличи­вается. Такие лопатки называются винтовыми.

По способу крепления на дисках или барабанах различают лопатки двух типов:

1) с погруженной посадкой, у которых хвосты заведены внутрь специальных выточек в ободе диска или барабана;

2) с верховой посадкой, у которых хвосты надеты верхом на гребень диска и закреплены.

На рис. 20 показаны наиболее распространенные формы лопа­точных хвостов.

Хвосты 3-11 применяют для крепления направляющих и ра­бочих лопаток. Хвосты типа 6 используют в современных турби­нах сухогрузных судов и танке­ров. Хвост 11 делают примерно такой же ширины, что и рабочую лопатку, его применяют для крепления реактивных лопаток. Крепление с верховой посадкой целесообразно для длинных ло­паток, подвергающихся действию значительных усилий.

Лопатки с погруженной по­садкой крепят также в индиви­дуальных осевых канавках с по­мощью сварки. Эти крепления обеспечивают замену любой из лопаток, а также позволяют по­лучить лучшие вибрационные ха­рактеристики и наименьший вес лопаток и диска. Крепление лопа­ток на диске при помощи сварки показано на рис. 21. Плоский хвост 2 лопатки 1 входит в канавку обода диска и приваривается к нему с двух сторон. Для большей прочности лопатки дополнительно скрепляют с диском заклепками 3 и в верхней части сваривают попарно бандажными полками 4. Крепление при помощи сварки повышает точность установки лопа­ток, упрощает и снижает затраты на их сборку. Приварка лопаток находит применение в газовых турбинах.

Для установки лопаточных хвостов на окружности лопаточ­ного венца обычно делают один-два выреза (замковое отверстие), закрываемые замком. При креплении лопаток с верховыми хво­стами типа ЛМЗ в индивидуальных прорезях и с помощью сварки замковые отверстия и замки не требуются.

Обычно лопатки набирают с двух сторон замкового отверстия независимо от количества замков. На рис. 22 изображены неко­торые конструкции замков.

На рис. 22, а в районе замка срезаны заплечики обода диска (показаны пунктиром), удерживающие Т-образный хвост. Лопатки, примыкающие к замковой вставке, во многих конструкциях прошиты штифтами и припаены к своим промежуточным встав­кам. Замковую вставку забивают между прилегающими ло­патками. Через имеющееся в щеке диска отверстие сверлят отвер­стие в замковой вставке, в которое и забивают заклепку. Концы заклепки расклепывают. На рис. 22, б замок представляет собой вставку 2, закрывающую боковой вырез в ободе диска и прикреп­ленную винтами 1 . На рис. 22, в показан замок двухвенечного колеса. Вырез для установки замковых лопаток 1 делают в сред­ней части обода диска между лопаточными канавками. Замковые лопатки крепят двумя планками 2, разгоняемыми клином 4, кото­рый крепится к ободу винтом 3. К недостаткам приведенных кон­струкций замков следует отнести ослабление обода вырезами и отверстиями для винтов. На рис. 22, г показан замок с расклинкой конструкции ЛМЗ. Замковые лопатки 2 и 3 изготовляют с высту­пами внизу, заходящими под хвосты соседних лопаток 1 и 4. После установки подкладки 7, стального клина 6 и подгонки замковой вставки 5, имеющей вырез в нижней части, вставку загоняют между замковыми лопатками.

Замок, конструкция которого показана на рис. 22, д, приме­няют для реактивных лопаток. Замковый вырез в ободе отсут­ствует. Лопатки с хвостовиками зубчикового типа заводят в паз ротора в радиальном направлении. Затем поворачивают на 90° с таким расчетом, чтобы зубчики входили в соответствующие ка­навки в ободе, и перемещают по окружности до места установки. После установки всех лопаток заводят замковую вставку, состоя­щую из двух частей 1 и 4, разгоняемых клипом 3. Клин удерживается отчеканен­ными выступами 2.

Хвостовики верхового типа позволяют получить сравнительно простую конструк­цию замков. На рис. 22, е показан замок для хвостовика типа обратный молот. Зам­ковая лопатка 5 имеет хвостовик с плоской прорезью, который надевается на реборд 4 обода 1 диска и крепится к нему, заклеп­ками 3 . В месте установки замковой ло­патки заплечики 2 (показаны штриховой линией) срезаны.

Лопатки турбины под действием паро­вого потока пара из сопел могут совер­шать колебания: 1) в плоскости вращения диска - тангенциальная вибрация; 2) в плоскости, перпендикулярной вращению ди­ска,- осевая вибрация; 3) крутильные. Осевая вибрация лопаток связана с вибра­цией дисков. Крутильные колебания лопа­ток характеризуются интенсивными колеба­ниями их вершин.

Надежность работы лопаточного аппара­та зависит от величины и характера вибра­ций, возникающих как в лопатках, так и в дисках, па которых они закреплены. Кроме того, лопатки, являясь упругими телами, способны вибрировать с собственными часто­тами. Если собственная частота колебаний лопаток равна или кратна частоте внешней силы, вызывающей эти колебания, то воз­никают так называемые резонансные колебания, не затухающие, а непрерывно продолжающиеся до прекращения действия силы, вызывающей резонанс, или до изменения ее частоты. Резонансные колебания могут вызвать разрушение рабочих лопаток и дисков. Чтобы избежать этого, облопаченные диски современных крупных турбин до установки на вал подвергают настройке, посредством которой изменяется частота их собственных колебаний.

В целях борьбы с вибрацией лопатки скрепляют в пакеты бан­дажной лентой или проволокой. На рис. 23 показано крепление лопаток связной проволокой, которую пропускают через отверстия в лопатках и припаивают к ним серебряным припоем. Как и бан­дажная лента, проволока но окружности состоит из отдельных отрезков длиной от 20 до 400 мм, между которыми возникают тепловые зазоры. Диаметр связной проволоки в зависимости от ширины лопатки принимают 4-9 мм.

Для уменьшения амплитуды колебаний пакетов между ними ставят демпферную проволоку 2 (мостик), ее припаивают к двум- трем крайним лопаткам одного пакета, и она свободно проходит через концевые лопатки сосед­него сегмента. Возникающее тре­ние проволоки о лопатки при вибрации пакета уменьшает амп­литуду колебаний. С помощью отверстий 1 упрощается уста­новка мостика. Материал для из­готовления лопаток должен обладать достаточной стойкостью при высокой температуре и хоро­шей механической обрабатываемостью, быть коррозионно и эрозионно устойчивым. Лопатки, работающие при температуре пара до 425° С, изготовляют из хромистых нержавеющих сталей марок 1X13 и 2X13 с содержанием хрома 12,5-14,5%. При более высо­ких температурах (480-500° С) используют хромоникелевые нер­жавеющие стали с содержанием никеля до 14%. Лопатки, рабо­тающие при температуре пара 500-550° С изготовляют из аустенитных сталей ЭИ123 и ЭИ405 с содержанием никеля 12-14% и хрома 14-16%. Литые лопатки выполняют из стали 2X13. Ма­териалом для вставок служит углеродистая сталь марок 15, 25 и 35, для бандажной ленты, связной проволоки, заклепок к лопат­кам и заклепок замков - нержавеющая сталь 1X13.

Для пайки бандажных лент и связной проволоки применяют серебряный припой марок ПС Р 45 и ПС Р 65 с содержанием серебра соответственно 45 и 65%.