Технология тонкая полировка оптических деталей. Способ магнитореологической обработки поверхностей оптических деталей малым инструментом. Основные технологические операции

Соединение склеиванием. Наиболее распространенным способом соединения оптических деталей между собой является их склеивание. Выбор марки клея, технологии склеивания и дополнительной термической обработки определяется размерами и материалом склеиваемых деталей, качеством сопрягаемых поверхностей (погрешностью напряжения поверхностей и чистотой поверхностей), техническими требованиями к соединению, свойствами клея.

Обычно технологический процесс склеивания оптических деталей включает следующие основные операции: подготовку деталей к склеиванию, подготовку клея, нанесение клея, взаимную юстировку склеиваемых деталей и фиксацию найденного положения, удаление клея с боковых поверхностей, выдержку склеенного соединения в заданных условиях, контроль.

1. Подготовка деталей состоит из двух последовательно выполняемых операций - комплектации деталей и чистки склеиваемых поверхностей органическими растворителями. Комплектация линз снижает суммарную погрешность толщин склеиваемых линз и тем самым обеспечивает получение заданных значений фокусных отрезков и качества изображения. При комплектации линз должны быть выполнены следующие условия:

а) алгебраическая сумма отклонений толщин отдельных линз двухлинзового комплекта должна быть минимальной и удовлетворять требованиям чертежа. У трехлинзовых комплектов отклонение толщины одной из линз должно быть равно по абсолютному значению и противоположно по знаку сумме отклонений толщин двух других.

Для обеспечения условий комплектации склеенных таким образом двух- или трехлинзовых комплектов с другими элементами оптической системы компоненты должны иметь определенные (по знаку) отклонения от номинала;

б) точность сопряжения склеиваемых поверхностей должна быть.

Соединяемые поверхности линз промывают, чистят, накладывают одну на другую и комплектами устанавливают на строго выставленную по горизонту плоскость.

Комплектация призм по углам снижает погрешности углов отклонения лучей, других геометрических параметров, повышает качество изображения за счет снижения хроматизма.

2. Подготовка клея зависит от выбранной марки клея. Пробирки с бальзамом нагревают в водяной бане до температуре 130-135 °С. Синтетические клеи, состоящие из нескольких компонентов, тщательно смешивают в пробирке с помощью механического смесителя.

3. Нанесение клея осуществляется с помощью стеклянной палочки - капельницы на верхнюю вогнутую поверхность нижней линзы. Затем накладывается верхняя линза и деревянной рукояткой с замшей или пробковой шайбой плавно круговыми движениями притирается к нижней. При этом пузырьки воздуха выдавливаются вместе с избытком клея. Оптимальная толщина слоя клея составляет 0,005-0,01 мм. Избыток клея удаляется салфеткой, смоченной органическими растворителями.

4. Юстировку и фиксацию найденного положения деталей для совмещения оптической оси склеенного линзового комплекта с геометрической осью нижней - боковой выполняют с помощью центрировочных автоколлимационных микроскопов. Для склеивания пластин, клиньев и призм используют специальные устройства, включающие коллиматоры, зрительные трубы, микроскопы и юстировочные приспособления.

5. Удаление клея с боковых поверхностей склеенных деталей выполняют механическим путем. Иногда дополнительно протирают ватным тампоном, смоченным в растворителе.

6. Выдержка склеенных деталей в заданных условиях производится в термостатах или в помещении под электроламповыми нагревателями.

7. Контроль склеенных деталей выполняют по расклейкам и царапинам, а по точности поверхностей и геометрическим параметрам.

Соединение запеканием. Применяют для обеспечения большой стойкости деталей типа кювет к химическим, термическим, механическим воздействиям. Перед спеканием поверхности очищают и протирают органическими растворителями.

Затем с помощью стеклянной палочки на спекаемые поверхности наносят пасту. Взаимная ориентация найденного положения осуществляются на специальных столиках или с помощью струбции.

Температура печи, время и режим спекания и охлаждения печи зависят от марки стекла, размеров деталей и состава пасты.

Соединение оптическим контактом. В ряде случаев в целях более точной взаимной ориентации соединяемых деталей применяют оптический контакт. Для этого тщательно очищенные и промытые поверхности сжимаются для удаления между ними воздуха.

Критерием качества соединения является отсутствие световых оттенков и пятен в плоскости контакта, наблюдаемых при боковом освещении.

Для предохранения от самопроизвольного снятия деталей с контакта стыки покрывают лаком или герметиком. Предварительное нанесение на контактируемые поверхности тонкой пленки кремнезема с последующим прогревом при 250 °С делает соединение неразъемным.

Такое соединение носит название “глубокий оптический контакт”, который значительно расширяет область применения оптического контакта, заменяет спекание и сварку.

Соединение свариванием. Сваривание кварцевых деталей выполняют в пламени кислородно-водородной горелки при температуре 2000 °С. Высокая температура местного нагрева вызывает кристаллизацию поверхностного слоя, что приводит к деформациям деталей.

Соединение паянием. Операция выполняется лазерным излучением, сфокусированным в плоскость шва, содержащего светопоглощающий припой. Для этого используют специальные технологические лазерные установки с возможностью точных перемещений луча вдоль стыка.

Доводка и полирование являются операциями окончательной обработки деталей штампов. Особенно часто эти операции применяются при изготовлении вытяжных штампов и штампов для холодного прессования и выдавливания.

Доводка. Доводке подвергают главным образом закаленные детали штампов.

Сущность процесса доводки заключается в обработке поверхности детали твердыми и мягкими абразивными материалами. При применении твердых абразивных материалов (порошков) мелкие зерна абразива помещаются между обрабатываемой деталью и притиром, обычно более мягким, чем обрабатываемая деталь. При некотором давлении мелкие абразивные зерна, будучи тверже поверхностей, между которыми они находятся, вдавливаются в притир. Таким образом, поверхность притира оказывается заполненной засевшими в его порах образивными зернами. Операция вдавливания абразивных зерен в поверхность притира называется шаржированием. Если после этой операции провести поверхностью притира по обрабатываемой детали, то абразивные зерна, находящиеся на притире, будут срезать частицы металла с поверхности детали.

Доводка мягкими абразивными материалами (пастами) отличается от описанного выше способа и применяется только для окончательного сглаживания поверхности детали. Сущность ее заключается в образовании на поверхности доводимой детали тонкой мягкой пленки в результате химического воздействия входящих в пасту наряду с абразивом химических компонентов. При движении притир с помощью мягкого абразива снимает с наиболее выступающих частиц поверхности детали образовавшуюся пленку. Обнажившиеся места под воздействием пасты вновь покрываются пленкой, и процесс повторяется. Таким образом происходит химико-механический процесс обработки поверхности металла.

Фигурные полости закаленных штампов (вытяжных, чеканочных для холодного выдавливания и холодного прессования) доводят алмазными головками (см. гл. IV, § 4) или притирами из красной меди, фибры и текстолита, на поверхность которых наносят алмазную пасту. Чтобы абразивная масса лучше удерживалась на притирах, их поверхность перед работой делают слегка шероховатой с помощью мелкозубого напильника или надфиля.

На рис. 87 показаны различные формы доводочно-полировальных наконечников, которые при работе вставляют в патроны бормашинок.


Рис. 87.

Шлифовально - доводочными бормашинками можно доводить поверхность пуансонов и матриц непосредственно на рабочем месте слесаря, а сферические полости матриц - во вращающемся патроне токарного станка (рис. 88). Контуры профильных окон вырубных матриц доводят на вертикальных доводочных станках, имеющих прямолинейное возвратно-поступательное движение инструмента (см. гл. V, § 4).


Рис. 88.

Производительность доводки во многом зависит от скорости движения притира. С увеличением скорости производительность возрастает, но слишком большая скорость приводит к разбрызгиванию абразивной пасты или смазки и нагреванию обрабатываемой детали.

Чем точнее должна быть обрабатываемая поверхность, тем меньше должна быть скорость доводки.

Плоские наружные поверхности пуансонов доводят на обычной притирочной плите.

Чтобы получить точный контур, пуансоны вырубных штампов доводят на чугунных профильных притирах, соответствующих контуру пуансона.

Использование контурных притиров позволяет ускорить операцию доводки, так как одновременно доводятся все углубления канавок пуансона и получается строгая прямолинейность и параллельность канавок при точном расположении их в одной плоскости.

Качество доводки и производительность процесса зависят от доводочного материала, поэтому не следует выполнять доводку любыми абразивно-доводочными материалами, так как это может вызвать излишние затраты времени, привести к порче притиров и браку детали.

Наибольшее влияние на производительность и качество доводки оказывает зернистость абразивов. Поэтому при доводке деталей необходимо постепенно переходить от крупнозернистых (грубых) к мелкозернистым (тонким) абразивно-доводочным материалам.

Недопустимо работать загрязненными доводочными материалами или смешивать порошки и пасты разной крупности. Загустевшие мягкие пасты перед употреблением следует разбавлять бензином, керосином или скипидаром.

Полирование. Полирование применяется для того, чтобы улучшить чистоту формообразующих поверхностей деталей штампов; устранить на них следы предыдущих операций обработки (штрихи, царапины, мельчайшие неровности).

Различают два вида полирования: предварительное и окончательное. Предварительное полирование применяют для механического удаления неровностей поверхности незакрепленными абразивами (в свободном состоянии) или зернами, закрепленными на рабочей поверхности полировальных кругов. Окончательное полирование выполняют незакрепленными мелкими шлифовальными порошками или мягкими эластичными кругами с нанесенными на них тонкими полировальными пастами.

При хорошо выполненной предварительной обработке поверхности (без царапин, штрихов, вмятин) съем металла при полировании составляет всего лишь 0,03- 0,05 мм. Но если перед полированием применялась, например, обработка шлифовальной шкуркой или войлочным кругом с нанесенным на их поверхность грубым абразивным зерном (№ 80 и грубее), то может потребоваться снятие слоя на глубину до 0,1 мм.

При окончательном полировании (глянцевании) снимаемый с поверхности детали слой составляет микрометры или доли микрометра. При изготовлении штампов и пресс-форм шероховатость поверхности в результате полирования может быть достигнута 12-го класса. Исходная для полирования шероховатость поверхности должна быть не ниже 8-го класса. Под глянцевание исходная шероховатость поверхности должна соответствовать 9-му классу.

В зависимости от требуемого класса чистоты обработки рекомендуется следующая зернистость абразивов (табл. 7).

Таблица 7

Высокая чистота поверхности достигается за несколько переходов с последовательным уменьшением зернистости полирующего материала. За один переход можно повысить чистоту поверхности на 1-2 класса. Чем лучше подготовлена поверхность к полированию и чем выше исходный класс чистоты поверхности, тем меньше переходов потребуется при полировании, тем производительнее будет обработка и меньше расход полирующих материалов.

При изготовлении деталей оснастки к полированию предъявляются особые требования. Главное из них - обеспечение требуемой шероховатости обработанной поверхности без искажения размеров и формы детали. Дефекты на отполированной поверхности не допускаются.

При обнаружении на полируемой поверхности глубоких рисок, царапин, раковин и вмятин их необходимо сначала устранить шлифованием абразивным кругом или шкуркой и лишь затем приступать к полированию. Полирование обычно начинают на участках наиболее вероятного расположения дефектов.

На отполированных поверхностях не допускаются прижоги (сине-бурые места), появляющиеся вследствие перегрева поверхностных слоев металла в данном месте. После полирования поверхностей, покрытых хромом, не допускаются отдельные риски, раковины, вмятины,желтые пятна, места с отслоением покрытия, трещины, не полностью отполированные участки и места, сошлифованные до основного металла или до предыдущего слоя покрытия (до меднения). Как отдельный вид полирования распространена подготовка поверхностей деталей к гальваническим покрытиям- матирование. При матировании полировальный круг (войлочный или тканевый) периодически смазывают пастами, содержащими мелкое абразивное зерно (электрокорунд или др.). Наиболее эффективны в этом случае маршалитовые пасты, так как находящиеся в них абразивные зерна не оставляют при обработке глубоких царапин на поверхности.

Матирование выполняют при вращении круга в направлении, поперечном к ранее полученным гребешкам шероховатости. Благодаря этому при матировании значительно понижается шероховатость обрабатываемой поверхности и лучше удерживается гальваническое покрытие. Кроме того, процесс полирования по покрытию, нанесенному после матирования, идет производительнее и снимается меньший слой нанесенного металла (хрома).

Полирование выполняют как на станке, так и ручными инструментами. При полировании используют полировальные, токарные, шлифовальные и сверлильные станки. При этом вращение может быть сообщено или полировальному инструменту, или обрабатываемой детали, что зависит от формы полируемой поверхности, а иногда от формы и массы детали.

Для полирования применяют также ручные машины с пневматическим или электрическим приводом, в патрон которых вставляют полировальные наконечники соответствующей формы.

Для постепенного подвода абразивной массы к рабочей поверхности механического полировального инструмента в центре его делают сквозное отверстие или коническое углубление, заполняемое перед полированием абразивной массой. В процессе работы масса, попадая под полировальный инструмент, переходит на его рабочую поверхность и компенсирует уже отработанную или частично разбрызганную полировальную массу.

В состав паст обычно входят машинное масло, керосин, парафин или стеарин и мельчайший абразивный порошок в соответствующих пропорциях.

При полировании вручную поверхностей стальных деталей в качестве смазки применяют обычно керосин, которым разводят абразивный порошок или пасту ГОИ. Окончательную отделку формующих полостей оснастки выполняют фетровыми или кожаными кругами, на которые наносят пасту ГОИ. Фетровым кругам сообщают вращение до 8000 об/мин.

Войлочные круги применяют при более грубой отделке и при меньших числах оборотов, так как при быстром вращении они скоро приходят в негодность.

Зеркальное полирование выполняют жесткими (медными, фибровыми или деревянными) наконечниками с нанесенным на их поверхность тонким слоем полировальной пасты, содержащей окись хрома, окись железа (крокус) или трепел.

Важное значение при полировании имеет правильный выбор окружной скорости полировального инструмента. При полировании деталей из стали и хрома окружную скорость принимают для кругов с использованием абразивных порошков 20-35 м/с, а для кругов с использованием паст - 30-50 м/с. Поверхности сложной формы полируют с меньшей окружной скоростью.

Давление круга на обрабатываемую деталь должно быть 2,5-5 кГ. При этом большее давление применяют при предварительном полировании, а меньшее - при окончательном. При зеркальном полировании давление должно быть совсем незначительным, иначе появляются пятна и прижоги.

Ефремов А.А., Сальников Ю.В. Изготовление и контроль оптических деталей - М.: Высшая школа, 1983. - 255 c.
Скачать (прямая ссылка): izgotovleniyaikontroloptiki1983.djvu Предыдущая 1 .. 72 > .. >> Следующая
8,78 4 4 + 10+17+23 54 8,48 6
планшайб. Расчет ведут для трех различных случаев расположения пластин (рис. 16.2) в центре блока: одной (а), трех (б) и четырех (в). Размер промежутков / между зонами и пластинами в зонах выбирают от 0,5 до 3 мм в зависмости от диаметра пластин. Диаметр планшайбы определяют из формулы Dn=md3 + nf, где m и п - безразмерные коэффициенты.
167
Если число зон на блоке меньше 5-6, то наклеивание пластин начинают с центральной зоны, помещая в ней одну, три или четыре заготовки. Если же зон много, то заготовки наклеивают, начиная с крайней зоны.
В зависимости от значения допустимой неплоскостности по N и AN, соотношения толщины t и диаметра d3 пластины применяют несколько способов блокирования. При t/d3>\f6 и N>5 пластины
крепят эластично, нанося смолу или воск по всей поверхности пластины. При l/15Af>0,5 блокирование осуществляют на точках - смоляных подушечках. При tfd3< 1/15 и N<1 применяют наиболее точный метод крепления - оптический контакт.
Блоки шлифуют на шлифовально-полировальных станках типа ШП, начиная свободным абразивом М28 и заканчивая абразивом не мельче М7. Обработку ведут в несколько переходов. Для среднего и мелкого шлифования часто применяют один шлифовальник. При шлифовании выдерживают толщину и клиновидность пластин. Клиновидность определяют как разнотолщинность пластин по краю. Обычно ее величина не более допуска на толщину пластины. Если клиновидность превышает допустимую величину, то ее устраняют, усиливая шлифование толстого края блока дополнительным давлением. Пластины с дефектами по классам чистоты I-II и значением N>10, являющиеся подложками для нанесения сеток и шкал, полируют суконными полировальниками.
Шлифованные плоские поверхности контролируют по дефектам чистоты и оптической притирочной /шней.кой на неплоскостность, а полированные -пробными стеклами или на интерферометре, определяя Ni и ДNu
Отполированные поверхности пластин после контроля лакируют и разблокировывают. Операция лакирования заключается в нанесении на полированную поверхность пластин, еще не снятых с блока, слоя нитроэмали. Нитроэмаль наносят кистью. Нитроэмаль должна быть любого темного цвета для того, чтобы при контроле другой стороны пластины и наложении пробного стекла лучше была видна интерференционная картина.
f
Рис. 16.2. Схемы расположения заготовок на блоке
168
После окончания обработки первой стороны пластины разбло-кировывают и ведут в той^же последовательности обработку второй стороны, контролируя при этом N2, ANZ, Рг.
После завершения всех операций на участке шлифования и полирования пластины проходят промывку. Промывку от нитроэмали осуществляют ацетоном в специальных ваннах при интенсивной направленной вентиляции. Для убыстрения процесса промывки пластины замачивают на несколько часов в ацетоновой ванне или применяют ультразвуковые промывочные ванны. Для серийного и массового производства применяют автоматические и полуавтоматические промывочные машины. Промытые пластины контролируют и, если они имеют дефекты оптической чистоты, выходящие за требования соответствующего класса, передают на переполировку, а иногда и перешлифовку поверхностей.
Для деталей, имеющих высокие требования к плоскостности полированной поверхности yV^l и ДЛ^0,1, применяют доводку в сепараторах. Сепаратор представляет собой диск (рис. 16.3, а) из стекла JIК5, JIK7 или КВ диаметром.0 = 1504-450 мм и толщиной / = 30ч-60 мм. Рабочая поверхность сепаратора выполнена с точностью 1-М и AAf=0,l-i-0,4. В диске имеется несколько отверстий, каждое из которых на 5-10% больше, чем диаметр обрабатываемых пластин. Отверстия в диске для деталей расположены на разных угловых расстояниях друг от друга (ф1#фг#фз) и на различных расстояниях от центра (Ri?=Rz?=R3)- Сепаратор 2 устанавливают на полировальник 1 шлифовально-полировального станка (рис. 16.3,6). В отверстия сепаратора укладывают пластины 3, предварительно отполированные с N=2 и АЛГ=0,3.
Чтобы на торцах пластин не появились выколки при доводке, стенки отверстий сепаратора обклеивают резиной 4. На каждую пластину помещают груз 5. Если необходимо устранить клиновид-ность пластины при ее доводке в сепараторе, то груз 5 смещают от центра пластин. Пластины кроме движений, совершаемых вместе с сеператором, вращаются вокруг своей оси в отверстиях сепаратора. Процесс доводки пластин заключается в полировании с помощью обычных технологических приемов.
При движении сепаратора по полировальнику он своей рабочей
Рис. 16.3. Доводка точных пластин
в сепараторах
169
поверхностью формует полировочную смолу, "разравнивая ее и передавая ей точную плоскую форму поверхности, которую имеет сам. Пластины, перемещаясь по поверхности полировальника, принимают эту форму. Процесс доводки происходит медленно, так как на каждой из пластин лежит груз небольшой массы, а режимы доводки на полировально-доводочных станках не интенсивные. Подачу полировальной суспензии в зону обработки производят вручную.
При длительной работе поверхность сепаратора теряет точность, срабатываясь на бугор или яму, поэтому его правят, т. е. восстанавливают первоначальную точность переполировыванием. Пр ав-ку сепаратора производят 1-2 раза в месяц по необходимости.

Цель полирования заключается в том, чтобы придать используемой поверхности требуемую прозрачность и значения N, DN, P. Процесс полирования стекла водными суспензиями полирующих порошков имеет более сложную, чем шлифовальные физико-химическую природу. При полировании требуется достичь шероховатости поверхности не более 3-5 сотых долей мкм. В соответствии с ГОСТ 2789-73.

Наружный рельефный слой, образованный шлифованием, удаляется полированием полностью, а трещиноватый частично остаётся, но трещины на поверхности заполировываются частицами гидролизированного стекла и не мешают прохождению света через него.

Внешне картина процесса полирования происходит так. Зёрна полирующего порошка, состоящего главным образом из окислов церия или железа, имеют размеры 0,2 – 2 мкм, они взвешены в воде и находятся между притирающими поверхностями полировальника и стекла.

По сравнению со шлифующими, зёрна полирующих порошков имеют меньшую твёрдость и менее резко выраженные абразивные свойства самозатачивания при раскалывании. О раскалывании и притуплении зёрен полирующих порошков, в большинстве случаев имеющих размеры 0,2 – 1,0 мкм, можно судить лишь по второстепенным косвенным признакам.

Полировальник имеет смоляной рабочий слой. Площадки поверхностных неровностей шлифованной поверхности стекла и смоляной поверхности полировальника значительно больше размеров зёрен полирующего порошка. Но на стекле неровности шлифованной поверхности имеют микрогеометрическую характеристику, а на смоле – макрогеометрическую. Рабочая поверхность вязкого смоляного полировальника, пластически деформируясь, выглаживается по микронеровностей шлифованной поверхности.

Вода, в которой взвешены зёрна, в первые моменты подачи суспензии оказывает гидростатическое противодавление наружу, а затем растекается и зёрна закрепляется, адсорбируясь в наружном слое смолы. Часть зёрен, ещё не закрепившихся в смоле, перекатывается, или закрепившись на мгновение, продолжает движение по направлению вектора относительной скорости .

Зёрна срезают вершины рельефного слоя, которые сразу становятся гладкими полированными. В дальнейшем размеры полированных площадок увеличиваются, высота неровностей уменьшается до свойственных 13-14му классам шероховатости.

Перекатывающиеся зёрна, закрепляясь (адсорбируясь) в смоле, и одновременно в остатках каверн, порах и бороздах, на отполированных элементарных площадках стекла как бы склеивают их с поверхностью полировальника и в дальнейшем при относительном перемещении сдирают кусочки коллоидной плёнки, образующейся на поверхности стекла под химическим воздействием воды.

Остаточные неровности полированной поверхности меньше 0,03 мкм, т.е. меньше длины волны видимого излучения, так как размер части зерна, проникающей в стекло, не превышает 0,3 мкм.

Пластические свойства смолы, удерживающей зёрна, и коллоидной плёнки способствуют тому, что работа зёрен полирующего порошка не сопровождается появлением царапин с рваными краями и растрескиванием стекла в ширину и в глубину. Благодаря пластическим свойствам коллоидной плёнки кремневой кислоты борозды, образующиеся от снятия ""стружки"", затягиваются. Оставшиеся от шлифования трещины заполняются коллоидными продуктами гидролиза стекла.

Для технологических и конструкторских расчётов принимают, что кинетическая энергия, расходуемая в относительном движении элементов кинематической пары стекло-инструмент, идёт на преодоление сопротивления стекла резанию его зёрнами полирующего порошка. Элементарные силы на каждом зерне и интегральное усиление резания полирования имеют статический характер.

Интегральная сумма элементарных сил образует усилие взаимодействия стекла с инструментом, которое является полезной нагрузкой станка при полировании. При полировании удаляется небольшой, но вполне ощутимый слой припуска, также как это было сделано в отношении шлифования.

При полировании химический процесс проявляется в том, что вода, действуя на стекло, образует коллоидную плёнку. Толщина плёнки растёт быстро в зависимости от химической стойкости стекла данной марки, достигая предельной толщины приблизительно за одну минуту. Раньше считали, что процесс полирования может идти при взаимодействии зёрен только с коллоидной плёнкой, но теперь режимы обработки стали так интенсивны, что плёнка не успевает образовываться и зёрна полирующего порошка воздействуют на стекло, не имеющее поверхностной плёнки. Доказано, что и в этом случае образуется поверхность полированная 13-го и 14-го классов шероховатости.

Таким образом, механическое воздействие зёрен имеет преобладающее значение и его усиление увеличивает эффективность полирования стекла. При полировании с помощью механических воздействий можно управлять процессом образования поверхности с заданными значениями N, и Р.

На полированной поверхности, кроме неровностей, значения которых оговорены 13-м и 14-м классами по ГОСТ 2789 – 73, всегда могут быть дефекты. Дефекты шероховатости остаются от шлифованной структуры или появляются в виде царапин на поверхности обработанной детали.

Царапины в процессе полирования образуются при попадании под инструмент частиц более твёрдых и крупных, чем зёрна полирующего порошка. Размеры дефектов чистоты полированных поверхностей оптических деталей нормируются и указываются соответствующими значениями в ГОСТе 11141 – 76.

Полирование выполняют на тех же станках, что и шлифование, но при меньшей частоте вращения рабочих органов. Шлифование длится минуты, а полирование – часы, т. е. Время приблизительно в 20 раз большее времени шлифования.

Рис.13.1 Схема работы закреплённого абразивного зерна