Суть управления состоит в оптимальном. Оптимальное управление технологическими процессами (Лекция). Физика общих процессов производственных систем

Государственное образовательное учреждение

высшего профессионального образования

Московский физико-технический институт

(государственный университет)

УТВЕРЖДАЮ

Проректор по учебной работе

Ю.А.Самарский

«____»_______________2004 г.

П Р О Г Р А М М А

по курсу: ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

по направлению 511600

факультет ФУПМ

кафедра математических основ управления

курс IV

семестр 7, 8

лекции – 50 час. Экзамен – 8 семестр

семинары – 50 час. Зачет – 7 семестр

лабораторные занятия – нет

Самостоятельная работа – 2 часа в неделю

ВСЕГО ЧАСОВ 100

Программу и задание составил: д.ф.-м.н., профессор Жадан В.Г.

Заведующий кафедрой С.А. Гуз

1. Основная задача оптимального управления. Принцип максимума Л.С. Понтрягина (принцип минимума). Каноническая форма записи. Принцип максимума для систем, содержащих управляющие параметры.

2. Задачи с подвижным правым концом. Условия трансверсальности. Задачи Лагранжа и Больца. Задачи Майера и Лагранжа с нефиксированным временем окончания процесса. Задача на быстродействие. Задача с подвижным левым концом.

3. Доказательство принципа максимума Л.С. Понтрягина для задачи Майера. Понятие игольчатой вариации. ЛеммаГронуолла–Беллмана. Учет оптимизации по управляющему параметру.

4. Связь принципа максимума с вариационным исчислением. Уравнение Эйлера. Первые интегралы уравнения Эйлера. Условия Веерштрасса, Лежандра и Якоби. Уравнение Якоби. Условия Веерштрасса–Эрдмана.

5. Линейные системы. Принцип максимума для линейных систем. Теорема о конечном числе точек переключений.

6. Множество достижимости для линейных систем. Экстремальное управление и экстремальный принцип.

7. Точечная управляемость для линейных систем. Критерий точечной управляемости. Теорема Калмана о точечной управляемости. Полная управляемость линейных систем. Теорема Калмана о полной управляемости автономных систем.

8. Проблема наблюдаемости. Критерий наблюдаемости для линейной системы. Наблюдение начального состояния. Связь между наблюдаемостью и управляемостью. Критерий полной наблюдаемости стационарной системы.

9. Формализм Лагранжа и его использование для решения задач оптимального управления. Проблема синтеза оптимального управления.

10. Проблема идентификации. Критерий идентифицируемости. Критерий полной идентифицируемости стационарной системы.

11. Системы с разрывными правыми частями. Условие скачка импульсов.

12. Понятие инвариантных систем. Свойства динамических систем. Опорное поле импульсов. Необходимые и достаточные условия инвариантности. Корректирующая функция.

13. Достаточные условия оптимальности. Поле экстремалей. Связь с достаточными условиями Веерштрасса для классической задачи вариационного исчисления.

14. Элементы теории динамического программирования. Необходимые условия оптимальности. Достаточные условия оптимальности. Уравнение Беллмана. Вывод принципа максимума из динамического программирования. Связь с вариационным исчислением.

15. Методы решения краевых задач. Применение метода Ньютона. Перенос граничных условий. Метод прогонки для нелинейных задач.

16. Численные методы, основанные на последовательном анализе вариантов. Метод «киевского веника», метод блуждающей трубки, метод локальных вариаций.

17. Численные методы, основанные на редукции к задачам нелинейного программирования. Вычисление производных по компонентам вектора управлений в случае дискретных процессов. Метод штрафов, метод нагруженного функционала.

18. Дискретный принцип минимума. Вариационные неравенства. Применение метода условного градиента для решения задач оптимального управления. Принцип квазиминимума.

19. Достаточные условия оптимальности В.Ф. Кротова для непрерывных и дискретных процессов. Применение формализма В.Ф. Кротова для решения линейных задач.

20. Особые управления. Определение особых управлений с помощью скобок Пуассона. Условия Келли и Коппа–Мойера.

СПИСОК ЛИТЕРАТУРЫ

1. Моисеев Н.Н. Численные методы в теории оптимальных систем. – М.: Наука, 1971.

2. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. – М.: Наука, 1982.

3. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. – М.: Наука, 1987.

4. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе З.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. – М.: Физматгиз, 1961.

5. Васильев Ф.П. Методы решения экстремальных задач. – М.: Наука, 1988.

6. Габасов Р., Кириллова Ф.М. Принцип максимума в теории оптимального управления. – Минск: Наука и техника, 1974.

7. Флеминг У., Ришел Р. Оптимальное управление детерминированными и стохастическими системами. – М.: Мир, 1978.

8. Основы теории оптимального управления /Под редакцией В.Ф. Кротова. – М.: Высшая школа, 1990.

9. Ли Э.Б., Маркус П. Основы теории оптимального управления. М.: Наука, 1972.

10. ГабасовР., Кириллова Ф.М. Особые оптимальные управления. – М.: Наука, 1973.

Задание можно посмотреть

Оптимальные САУ – это системы в которых управление осуществляется таким образом что требуемый критерий оптимальности имеет экстремальное значение. Граничные условия определяющие начальное и требуемое конечное состояния системы технологическая цель системы. tн Её ставят в тех случаях когда особый интерес представляет среднее отклонение в течение определённого интервала времени и задача системы управления – обеспечить минимум этого интеграла...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Оптимальное управление

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 477 – 491.

Оптимальные САУ – это системы, в которых управление осуществляется таким образом, что требуемый критерий оптимальности имеет экстремальное значение.

Примеры оптимального управления объектами:

  1. Управление движением ракеты с целью достижения ею заданной высоты или дальности при минимальном расходе горючего;
  2. Управление перемещением приводимого двигателем механизма, при котором минимизировались бы затраты энергии;
  3. Управление атомным реактором, при котором максимальна производительность.

Задача оптимального управления формулируется следующим образом:

“Найти такой закон изменения во времени управления u (t ), при котором система при заданных ограничениях перейдёт из одного заданного состояния в другое оптимальным образом в том смысле,что функционал I , выражающий качество процесса, получит при найденном управлении экстремальное значение “.

Чтобы решить задачу оптимального управления, необходимо знать:

1.Математическое описание объекта и среды, связывающее значения всех координат исследуемого процесса,управляющих и возмущающих воздействий;

2.Ограничения физического характера на координаты и закон управления, выраженные математически;

3. Граничные условия, определяющие начальное и требуемое конечное состояния системы

(технологическая цель системы);

4.Целевую функцию (функционал качества –

математическая цель).

Математически критерий оптимальности чаще всего представляют в виде:

t к

I =∫ f o [ y (t ), u (t ), f (t ), t ] dt + φ [ y (t к ), t к ], (1)

t н

где первое слагаемое характеризует качество управления на всём интервале (t н , t н ) и называется

интегральной составляющей, второе слагаемое

характеризует точность в конечный (терминальный) момент времени t к .

Выражение (1) называется функционалом, так как I зависит от выбора функции u (t ) и получающегося при этом y (t ).

Задача Лагранжа. В ней минимизируется функционал

t к

I=∫f o dt.

t н

Её ставят в тех случаях, когда особый интерес представляет среднее отклонение в течение

определённого интервала времени, и задача системы управления – обеспечить минимум этого интеграла (ухудшение качества продукции, убыток и т.п.).

Примеры функционалов:

I =∫ (t ) dt – критерий минимальной ошибки в установившемся режиме, где x (t ) –

  1. отклонение управляемого параметра от заданного значения;

I =∫ dt = t 2 - t 1 = > min – критерий максимального быстродействия САУ;

I =∫ dt = > min – критерий оптимальной экономичности.

Задача Майера. В этом случае минимизируемым является функционал, определяемый только терминальной частью, т.е.

I = φ =>min.

Например, для системы управления ЛА, описываемым уравнением

F o (x , u , t ),

можно поставить следующую задачу: определить управление u (t ), t н ≤ t ≤ t к так, чтобы за

заданное время полёта достичь максимальной дальности при условии, что в конечный момент времени t к ЛА совершит посадку, т.е. x (t к ) =0.

Задача Больца сводится к задаче минимизации критерия (1).

Базовыми методами решения задач оптимального управления являются:

1.Классическое вариационное исчисление – теорема и уравнение Эйлера;

2.Принцип максимума Л.С. Понтрягина;

3.Динамическое программирование Р. Беллмана.

УРАВНЕНИЕ И ТЕОРЕМА ЭЙЛЕРА

Пусть задан функционал:

t к

I =∫ f o dt ,

t н

где – некоторые дважды дифференцируемые функции, среди которых необходимо найти такие функции (t ) или экстремали , которые удовлетворяют заданным граничным условиям x i (t н ), x i (t к ) и минимизируют функционал.

Экстремали отыскиваются среди решений уравнения Эйлера

I = .

Для установления факта минимизации функционала необходимо удостовериться, что вдоль экстремалей выполняются условия Лагранжа:

аналогичные требованиям положительности второй производной в точке минимума функции.

Теорема Эйлера: “Если экстремум функционала I существует и достигается среди гладких кривых, то он может достигаться только на экстремалях”.

ПРИНЦИП МАКСИМУМА Л.С.ПОНТРЯГИНА

Школа Л.С.Понтрягина сформулировала теорему о необходимом условии оптимальности, сущность которой в следующем.

Допустим, что дифференциальное уравнение объекта вместе с неизменяемой частью управляющего устройства заданы в общей форме:

На управление u j могут накладываться ограничения, например, в виде неравенств:

, .

Цель управления состоит в переводе объекта из начального состояния (t н ) в конечное состояние (t к ). Момент окончания процесса t к может быть фиксированным или свободным.

Критерием оптимальности пусть будет минимум функционала

I = dt .

Введём вспомогательные переменные и образуем функцию

Fo ()+ f () f ()+

Принцип максимума гласит, что для оптимальности системы, т.е. для получения минимума функционала, необходимо существование таких ненулевых непрерывных функций, удовлетворяющих уравнению

Что при любом t , находящемся в заданном диапазоне t н≤ t ≤ t к , величина Н, как функция допустимого управления, достигает максимума.

Максимум функции Н определяется из условий:

если не достигает границ области, и как точная верхняя грань функции Н по в противном случае.

Динамическое программирование Р.Беллмана

Принцип оптимальности Р.Беллмана:

“ Оптимальное поведение обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение в начальный момент, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения.”

Под “поведением” системы следует понимать движение этих систем, а термин “решение” относится к выбору закона изменения во времени управляющих сил.

В динамическом программировании процесс поиска экстремалей разбивается на n шагов, в то время как в классическом вариационном исчислении ведётся поиск экстремали целиком.

Процесс поиска экстремали базируется на следующих предпосылках принципа оптимальности Р.Беллмана:

  1. Каждый отрезок оптимальной траектории является сам по себе оптимальной траекторией;
  2. Оптимальный процесс на каждом участке не зависит от его предыстории;
  3. Оптимальное управление (оптимальная траектория) ищется с помощью попятного движения [от y (T ) к y (T -∆) , где ∆ = Т/ N , N – число участков разбиения траектории, и т.д.].

Эвристически уравнения Беллмана для требуемых постановок задач выведены применительно к непрерывным и дискретным системам.

Адаптивное управление

Андриевский Б.Р., Фрадков А.Л. Избранные главы теории автоматического управления с примерами на языке MATLAB . – СПб.: Наука, 1999. – 467с. Глава 12.

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 491 – 499.

Анхимюк В.Л., Опейко О.Ф., Михеев Н.Н. Теория автоматического управления. – Мн.: Дизайн ПРО, 2000. – 352с. С. 328 – 340.

Необходимость в адаптивных системах управления возникает в связи со значительным усложнением решаемых задач управления, причем специфическая особенность такого усложнения заключается в отсутствии практической возможности для подробного изучения и описания процессов, протекающих в управляемом объекте.

Например, современные высокоскоростные летательные аппараты, точные априорные данные о характеристиках которых во всех условиях функционирования не могут быть получены из-за значительных разбросов параметров атмосферы, больших диапазонов изменения скоростей полета, дальностей и высот, а также из-за наличия широкого спектра параметрических и внешних возмущений.

Некоторые объекты управления (самолеты и ракеты, технологические процессы и энергетические установки) отличаются тем, что их статические и динамические характеристики изменяются в широких пределах непредвиденным заранее образом. Оптимальное управление такими объектами возможно с помощью систем, в которых недостающая информация автоматически пополняется самой системой в процессе работы.

Адаптивными (лат.” adaptio ” – приспособление) называются такие системы, которые при изменении параметров объектов или характеристик внешних воздействий в процессе эксплуатации самостоятельно, без участия человека изменяют параметры регулятора, его структуру, настройку или регулирующие воздействия для поддержания оптимального режима работы объекта.

Создание адаптивных систем управления осуществляется в принципиально иных условиях, т.е. адаптивные методы должны способствовать достижению высокого качества управления при отсутствии достаточной полноты априорной информации о характеристиках управляемого процесса или в условиях неопределенности.

Классификация адаптивных систем :

Самоприспосабливающиеся

(адаптивные)

Системы управления

Самонастраивающиеся Самообучающиеся Системы с адаптацией

Системы системы в особых фазовых

Состояниях

Поисковые Беспоиско- Обучающие- Обучающие- Релейные Адаптивные

(экстремаль- вые (анали- ся с поощре- ся без автоколеба- системы с

Ные) тические) нием поощрения тельные переменной

Системы системы системы структурой

Структурная схема классификации АС (по характеру процесса адаптации)

Самонастраивающиеся системы (СНС) представляют собой системы, в которых адаптация при изменении условий работы осуществляется путем изменения параметров и управляющих воздействий.

Самоорганизующимися называются системы, в которых адаптация осуществляется за счет изменения не только параметров и управляющих воздействий, но и структуры.

Самообучающаяся – это система автоматического управления, в которой оптимальный режим работы управляемого объекта определяется с помощью управляющего устройства, алгоритм которого автоматически целенаправленно совершенствуется в процессе обучения путем автоматического поиска. Поиск производится с помощью второго управляющего устройства, являющегося органической частью самообучающейся системы.

В поисковых системах изменение параметров управляющего устройства или управляющего воздействия осуществляется в результате поиска условий экстремума показателей качества. Поиск условий экстремума в системах этого типа осуществляется с помощью пробных воздействий и оценки полученных результатов.

В беспоисковых системах определение параметров управляющего устройства или управляющих воздействий производится на основе аналитического определения условий, обеспечивающих заданное качество управления без применения специальных поисковых сигналов.

Системы с адаптацией в особых фазовых состояниях используют особые режимы или свойства нелинейных систем (режимы автоколебаний, скользящие режимы) для организации контролируемых изменений динамических свойств системы управления. Специально организованные особые режимы в таких системах либо служат дополнительным источником рабочей информации об изменяющихся условиях функционирования системы, либо наделяют системы управления новыми свойствами, за счет которых динамические характеристики управляемого процесса поддерживаются в желаемых пределах независимо от характера возникающих при функционировании изменений.

При применении адаптивных систем решаются следующие основные задачи:

1 . В процессе функционирования системы управления при изменении параметров, структуры и внешних воздействий обеспечивают такое управление, при котором сохраняются заданные динамические и статические свойства системы;

2 . В процессе проектирования и наладки при начальном отсутствии полной информации о параметрах, структуре объекта управления и внешних воздействиях производят автоматическую настройку системы в соответствии с заданными динамическими и статическими свойствами.

Пример 1 . Адаптивная система стабилизации углового положения ЛА.

f 1 (t ) f 2 (t ) f 3 (t )

Д1 Д2 Д3

ВУ1 ВУ2 ВУ3 f (t ) f 1 (t ) f 2 (t ) f 3 (t )

u (t ) W 1 (p ) W 0 (p ) y (t )

+ -

Рис. 1.

Приспосабливающаяся система стабилизации ЛА

При изменении условий полета меняется передаточная функция W 0 (p ) ЛА, а, следовательно, и динамическая характеристика всей системы стабилизации:

. (1)

Возмущения со стороны внешней среды f 1 (t ), f 2 (t ), f 3 (t ) , приводящие к контролируемым изменениям параметров системы, приложены к различным точкам объекта.

Возмущающее воздействие f (t ) , приложенное непосредственно к входу объекта управления, в отличие от f 1 (t ), f 2 (t ), f 3 (t ) не меняет его параметров. Поэтому в процессе работы системы измеряют только f 1 (t ), f 2 (t ), f 3 (t ).

В соответствии с принципом обратной связи и выражением (1) неконтролируемые изменения характеристики W 0 (p ) из-за возмущений и помех вызывают сравнительно небольшие изменения параметров Ф(p ) .

Если поставить задачу более полной компенсации контролируемых изменений, чтобы передаточная функция Ф(р) системы стабилизации ЛА оставалась практически неизменной, то следует надлежащим образом изменить характеристику регулятора W 1 (p ). Это и осуществляется в приспосабливающейся САУ, выполненной по схеме рис.1. Параметры внешней среды, характеризуемые сигналами f 1 (t ), f 2 (t ), f 3 (t ), например давление скоростного напора P H (t ) , температура окружающего воздуха T 0 (t ) и скорость полёта υ(t ) , непрерывно измеряются датчиками Д 1 , Д 2 , Д 3 , и текущие значения параметров поступают в вычислительные устройства В 1, В 2 ,В 3 , вырабатывающие сигналы, с помощью которых подстраивается характеристика W 1 (p ), чтобы компенсировать изменения характеристики W 0 (p ).

Однако, в АСАУ данного типа (с разомкнутым циклом настройки) отсутствует самоанализ эффективности осуществляемых ею контролируемых изменений.

Пример 2. Экстремальная система управления скоростью полета ЛА.

Z Возмущающее

Воздействие

X 3 = X 0 - X 2

Устройство авто- X 0 Усилительно- X 4 Исполнительное X 5 Регулируемый X 1

Матического по- преобразователь- устройство объект

Иска экстремума + - ное устройство

Измерительное

Устройство

Рис.2.Функциональная схема экстремальной системы управления скоростью полета ЛА

Экстремальная система определяет наивыгоднейшую программу, т.е. то значение X 1 (требуемая скорость движения ЛА), которое нужно в данный момент выдерживать, чтобы производился минимум расхода горючего на единицу длины пути.

Z - характеристика объекта; X 0 - управляющее воздействие на систему.

(величина расхода горючего)

y(0)

y(T)

Самоорганизующиеся системы

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура относительная влажность скорость движения воздуха в зависимости от способности организма человека к акклиматизации в разное время года характера одежды интенсивности производимой работы и характера тепловыделений в рабочем помещении. Перепады температуры воздуха по высоте и по горизонтали а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны... Управление: понятие признаки система и принципы Органы государственного управления: понятие виды и функции. По содержанию административное право является государственно-управленческим правом реализующим правовой интерес большинства граждан для чего субъекты управления наделяются юридически властными полномочиями представительскими функциями государства. Следовательно объектом действия юридических норм являются специфические управленческие общественные отношения возникающие между субъектом управления управляющим и объектами... Государственное регулирование социально-экономического развития регионов. Местные бюджеты как финансовая основа социально-экономического развития региона. Разные территории Украины имеют свои особенности и отличия как относительно экономического развития так и в социальном историческом языковом и ментальном аспектах. Из таких проблем нужно прежде всего назвать несовершенство отраслевой структуры большинства региональных хозяйственных комплексов их низкую экономическую эффективность; значительные отличия между регионами в уровнях...

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Уже то обстоятельство, что в этой фразе встретилось несколько латинских слов (maximum - наибольшее, minimum - наименьшее, extremum - крайнее, optimus - оптимальное), указывает, что теория экстремальных задач была предметом исследования с древних времен. О некоторых таких задачах писали еще Аристотель (384-322 годы до н.э.), Евклид (III в. до н.э.) и Архимед (287-212 годы до н.э.). Основание города Карфагена (825 год до н.э.) легенда ассоциирует с древнейшей задачей определения замкнутой плоской кривой, охватывающей фигуру максимально возможной площади. Подобные задачи именуются изопериметрическими.

Характерной особенностью экстремальных задач является то, что их постановка была порождена актуальными запросами развития общества. Более того, начиная с XVII века доминирующим становится представление о том, что законы окружающего нас мира являются следствием некоторых вариационных принципов. Первым из них был принцип П. Ферма (1660 год), в соответствии с которым траектория света, распространяющегося от одной точки к другой, должна быть такова, чтобы время прохождения света вдоль этой траектории было минимально возможным. Впоследствии были предложены раз- личные широко используемые в естествознании вариационные принципы, например: принцип стационарного действия У.Р. Гамильтона (1834 год), принцип виртуальных перемещений, принцип наименьшего принуждения и др. Параллельно развивались и методы решения экстремальных задач. Около 1630 года Ферма сформулировал метод исследования на экстремум для полиномов, состоящий в том, что в точке экстремума производная равняется нулю. Для общего случая этот метод получен И. Ньютоном (1671) и Г.В. Лейбницем (1684), работы которых знаменуют зарождение математического анализа. Начало развития классического вариационного исчисления датируется появлением в 1696 году статьи И. Бернулли (ученика Лейбница), в которой сформулирована постановка задачи о кривой, соединяющей две точки А и В, двигаясь по которой из точки А в В под действием силы тяжести материальная точка достигнет В за минимально возможное время.

В рамках классического вариационного исчисления в XVIII-XIX веках установлены необходимые условие экстремума первого порядка (Л. Эйлер, Ж.Л. Лагранж), позднее развиты необходимые и достаточные условия второго порядка (К.Т.В. Вейерштрасс, А.М. Лежандр, К.Г.Я. Якоби), построены теория Гамильтона-Якоби и теория поля (Д. Гиль- берт, А. Кнезер). Дальнейшее развитие теории экстремальных задач привело в XX веке к созданию линейного программирования, выпуклого анализа, математического программирования, теории минимакса и некоторых иных разделов, одним из которых является теория оптимального управления.

Эта теория подобно другим направлениям теории экстремальных задач, возникла в связи с актуальными задачами автоматического регулирования в конце 40-х годов (управление лифтом в шахте с целью наискорейшей остановки его, управление движением ракет, стабилизация мощности гидроэлектростанций и др.). Заметим, что постановки отдельных задач, которые могут быть интерпретированы как задачи оптимального управления, встречались и ранее, например в “Математических началах натуральной философии” И. Ньютона (1687). Сюда же относятся и задача Р. Годдарда (1919) о подъеме ракеты на заданную высоту с минимальными затратами топлива и двойственная ей задача о подъеме ракеты на максимальную высоту при заданном количестве топлива. За прошедшее время были установлены фундаментальные принципы теории оптимального управления: принцип максимума и метод динамического программирования.

Указанные принципы представляют собой развитие классического вариационного исчисления для исследования задач, содержащих сложные ограничения на управление.

Сейчас теория оптимального управления переживает период бурного развития как в связи с наличием трудных и интересных математических проблем, так и в связи с обилием приложений, в том числе и в таких областях, как экономика, биология, медицина, ядерная энергетика и др.

Все задачи оптимального управления можно рассматривать как задачи математического программирования и в таком виде решать их численными методами.

При оптимальном управлении иерархическими многоуровневыми системами, например, крупными химическими производствами, металлургическими и энергетическими комплексами, применяются многоцелевые и многоуровневые иерархические системы оптимального управления. В математическую модель вводятся критерии качества управления для каждого уровня управления и для всей системы в целом, а также координация действий между уровнями управления.

Если управляемый объект или процесс является детерминированным, то для его описания используются дифференциальные уравнения. Наиболее часто используются обыкновенные дифференциальные уравнения вида. В более сложных математических моделях (для систем с распределёнными параметрами) для описания объекта используются дифференциальные уравнения в частных производных. Если управляемый объект является стохастическим, то для его описания используются стохастические дифференциальные уравнения.

Если решение поставленной задачи оптимального управления не является непрерывно зависящим от исходных данных (некорректная задача), то такая задача решается специальными численными методами.

Система оптимального управления, способная накапливать опыт и улучшать на этой основе свою работу, называется обучающейся системой оптимального управления.

Реальное поведение объекта или системы всегда отличается от программного вследствие неточности в начальных условиях, неполной информации о внешних возмущениях, действующих на объект, неточности реализации программного управления и т.д. Поэтому для минимизации отклонения поведения объекта от оптимального обычно используется система автоматического регулирования.

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Под оптимальной САУ понимается наилучшая в некотором смысле система. Критерии оптимальности могут быть различны и зависят от решаемой задачи. Наиболее часто встречаются такие критерии оптимальности:

1) Точность САУ при изменяющемся воздействии,

2) Время переходного процесса,

3) Экономичность;

    Производительность;

    Интегральные критерии.

К настоящему времени наибольшее развитие получили 2 направления в теории оптимальности систем:

1) Теория оптимального управления движением систем с полной информацией об объекте и возмущениях;

    Теории оптимального управления при случайных возмущениях.

Для реализации оптимального управления необходимо:

    Определить цель управления. Цель выражается либо целевой функцией, либо критерием оптимизации.

Целевая функция или критерий оптимизации позволяют найти количественный эффект любого решения.

    Выбрать модель для анализа и определения эффективности принятого решения.

    Изучить все состояния среды функционирования объекта, влияющие на прошлое, настоящее и будущее процесса управления.

При решении задачи оптимального управления используются методы вариационного исчисления, принципы максимума, а также динамическое и математическое программирование.

Задачу оптимального управления в общем случае можно сформировать следующим образом:

1)Цель управления, представленная математически в виде некоторого функционалаили критерия управления

2)Уравнения системы - они обычно задаются в виде уравнений состояний

3)Система граничных уравнений в начальный и конечный момент времени.

4)Система ограни­чений, которым должны удовлетворять переменные состояния и уравнения.

Требуется найти:

Вектор управления, при котором критерий цели управления имеет экстремум (max или min).

Необходимо отметить, что оптимальное управление в ряде случаев может не существовать, и об этом нельзя судить не решая задачу. Решение задачи нахождения оптимального управления является неоднозначным, т.е. каждое найденное решение дает локальный оптимум. Если найдены все локальные оптимумы, то в этом случае может быть выделен глобальный оптимум. Найденный глобальный оптимум является решением задачи оптимального управления.

Интегральные критерии качества:

    Оптимальное Быстродействие

Функционал имеет вид

    Оптимальная Производительность

Критерием оптимальности явл-ся угол поворота  за определенное время t и функционал имеет вид

    Оптимальная экономичность

Критерием оптимальности явл-ся расход энергии за определенное время и функционал имеет вид

28. Аналитическое конструирование регуляторов. Постановка задачи.

При исследовании качества переходных в линейных САУ вводились разлитые интегральные критерии качества, с помощью которых оценивался переходной процесс на бесконечном интервале времени. При рассмотрении интегральных критериев качества мы убедились в том, что эти критерии позволяют определить параметры регулятора, если задана его структура. Можно поставить более общую задачу: найти закон регулирования - аналитическую функцию, связывающую управляющую координату и управляющее воздействие при этом доставляющее min интегральному критерию качества. Такое оптимальное конструирование дифференциального уравнения регулятора получило название аналитического конструирования регуляторов. По методам решения и постановке задачи эта задача сродни задачам оптимального регулирования.

Это вариационная задача, где в качестве экстремали ищется функция связывающая Х и U.

При аналитическом конструировании задача состоит в том, что бы найти закон регулирования который с учетом уравнений объекта и граничных условий доставлял бы min интегралу, характеризующему квадратичную ошибку системы и гарантирующему ее устойчивость.

Постановка задачи оптимального конструирования регуляторов.

Объект регулирования задан с помощью дифуравнений, что в операторной форме соответствует заданию передаточной функции Wор(S) (или W(S))

Считают что на систему не действуют внешние возмущения, а переходной процесс происходит при изменении начальных условий.

X = y 0 – y - рассогласование

Вустойчивой линейной САУ в результате переходного процесса все функции координат должны стремиться к 0. х 1 () = х 2 () = … х n () = U() = 0 (2)

В качестве критерия оптимальности выберем интеграл вида

(3), где V- положительно определённая квадратичная форма.

Т.е. если подставитьV в  (3) то это будет квадратичная ошибка системы.

Член U 2 в (4) характеризует стоимость процесса управления, т.е. затраты энергии на нагрев. U 2 гарантирует отсутствие нереализуемых в линейных регуляторах законов, он гарантирует отсутствие управляющих воздействий, при которых скорость превращается в бесконечность.

Само существование (3) гарантирует устойчивость системы. При аналитическом конструирование задание состоит в том чтобы найти в аналитической форме функцию Ф(U,U,x 1 …x k) = 0 (5) – который с учётом уравнений объекта и приграничных условий (1) и (2) доставлял бы минимум интегралу (3).

Оптимальное управление

Оптимальное управление - это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы .

Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств .

Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление , принцип максимума Понтрягина и динамическое программирование Беллмана .

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Задача оптимального управления

Сформулируем задачу оптимального управления:

здесь - вектор состояния - управление, - начальный и конечный моменты времени.

Задача оптимального управления заключается в нахождении функций состояния и управления для времени , которые минимизируют функционал.

Вариационное исчисление

Рассмотрим данную задачу оптимального управления как задачу Лагранжа вариационного исчисления . Для нахождения необходимых условий экстремума применим теорему Эйлера-Лагранжа . Функция Лагранжа имеет вид: , где - граничные условия. Лагранжиан имеет вид: , где , , - n-мерные вектора множителей Лагранжа .

Необходимые условия экстремума, согласно этой теореме, имеют вид:

Необходимые условия (3-5) составляют основу для определения оптимальных траекторий. Написав эти уравнения, получаем двухточечную граничную задачу, где часть граничных условий задана в начальный момент времени, а остальная часть - в конечный момент. Методы решения подобных задач подробно разбираются в книге

Принцип максимума Понтрягина

Необходимость в принципе максимума Понтрягина возникает в случае когда нигде в допустимом диапазоне управляющей переменной невозможно удовлетворить необходимому условию (3), а именно .

В этом случае условие (3) заменяется на условие (6):

(6)

В этом случае согласно принципу максимума Понтрягина величина оптимального управления равна величине управления на одном из концов допустимого диапазона. Уравнения Понтрягина записываются при помощи функции Гамильтона Н, определяемой соотношением . Из уравнений следует, что функция Гамильтона H связана с функцией Лагранжа L следующим образом: . Подставляя L из последнего уравнения в уравнения (3-5) получаем необходимые условия, выраженные через функцию Гамильтона:

Необходимые условия, записанные в такой форме, называются уравнениями Понтрягина. Более подробно принцип максимума Понтрягина разобран в книге .

Где применяется

Принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления.

История

За разработку теории оптимального управления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому , Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия .

Метод динамического программирования

Метод динамического программирования основан на принципе оптимальности Беллмана, который формулируется следующим образом: оптимальная стратегия управления обладает тем свойством, что каково бы ни было начальное состояние и управление в начале процесса последующие управления должны составлять оптимальную стратегию управления относительно состояния, полученного после начальной стадии процесса . Более подробно метод динамического программирования изложен в книге

Примечания

Литература

  1. Растригин Л.А. Современные принципы управления сложными объектами. - М.: Сов. радио, 1980. - 232 с., ББК 32.815, тир. 12000 экз.
  2. Алексеев В.М., Тихомиров В.М. , Фомин С.В. Оптимальное управление. - М.: Наука, 1979, УДК 519.6, - 223 c., тир. 24000 экз.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптимальное управление" в других словарях:

    Оптимальное управление - ОУ Управление, обеспечивающее наивыгоднейшее значение определенного критерия оптимальности (КО), характеризующего эффективность управления при заданных ограничениях. В качестве КО могут быть выбраны различные технические или экономические… … Словарь-справочник терминов нормативно-технической документации

    оптимальное управление - Управление, цель которого заключается в обеспечении экстремального значения показателя качества управления. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно технической терминологии. 1984 г.]… … Справочник технического переводчика

    Оптимальное управление - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием: «О.у.»); означает выбор таких управляющих параметров, которые обеспечивали бы наилучшее с точки… … Экономико-математический словарь

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, напр. за минимальное время, с наибольшим экономическим эффектом, с максимальной точностью … Большой Энциклопедический словарь

    Летательным аппаратом раздел динамики полёта, посвящённый развитию и использованию методов оптимизации для определения законов управления движением летательного аппарата и его траекторий, обеспечивающих максимум или минимум выбранного критерия… … Энциклопедия техники

    Раздел математики, изучающий неклассические вариационные задачи. Объекты, с которыми имеет дело техника, обычно снабжены «рулями» с их помощью человек управляет движением. Математически поведение такого объекта описывается… … Большая советская энциклопедия