Выработка бульдозера м3 в час. Производительность бульдозеров российских и зарубежных тракторостроителей. Производительность бульдозеров российского производства и их зарубежных аналогов

5. Определить производительность бульдозера при разработке грунта

Исходные данные к задаче: бульдозер марки Т-500, дальность транспортировки грунта L = 160 метров, грунт – плотный суглинок.

Производительность бульдозера определяем по формуле

где П – производительность бульдозера, м 3 /час; V пр – объем призмы волочения, м 3 ; Т ц – продолжительность цикла, с; К – коэффициент потери грунта, К = 1- 0,005 L, L – дальность транспортирования грунта,

L = 1- 0,005∙160 = 0,2; К р – коэффициент разрыхления грунта, К р = 1,3 (таб.8)

Тяговое усилие, развиваемое трактором при мощности 372 кВт (таб.5), в ньютонах;

, (5.2)

где N дв - мощность двигателя трактора, кВт; - КПД трансмиссии трактора, = 0,9; V 1 - скорость движения трактора на 1-ой передаче, м/с. V 1 =4 км/час = 1,1 м/с.

Сила тяги по сцеплению Т сц, в ньютонах:


где G сц = m 9,8 – сила тяжести трактора с навесным оборудованием, Н; m – эксплуатационная масса бульдозера, 59455 (кг), таб.5 - коэффициент сцепления при движении по плотному суглинку =0,9;

G сц =59455∙9,8 = 582659 (Н)

Т сц =582659∙0,9=524393 (Н)

Условие движения без буксования:

Т сц › Т N ›W

где W – суммарное сопротивление, возникающее при работе бульдозера.

W=ΣW=W 1 +W 2 +W 3 +W 4, (5.4)

где W 1 – сопротивление грунта резанию:

W 1 =B∙sinα∙c∙k,

где В = 4530 мм. (таб.5) – длина отвала, м; α = 90 ° (таб.5) – угол поворота отвала в плане относительно оси трактора, град; с – толщина срезаемого слоя, принимаем равной 0,3 м; κ = 100000 Па по (таб.8) – удельное сопротивление грунта резанию, Па.

W 1 =4,53∙1∙0,3∙100000=135900


W 2 = (5.5)

где W 2 – сопротивление волочению призмы грунта перед отвалом; Н=2,12м (таб.5) – высота отвала, м; ψ=40 ° - угол естественного откоса грунта; γ = 1800 кг/м 3 (таб.8) – плотность грунта; g = 9,81 м/с 2 – ускорение свободного падения; μ = 0,7 – коэффициент трения грунта по грунту; i = 0 -уклон пути, участок горизонтальный.

W 2 =

W 3 = (5.5)

где W 3 – сопротивление перемещению стружки грунта вверх по отвалу; δ=50 ° - угол резания; μ 1 = 0,7 - коэффициент трения грунта по стали;

W 3 =

Определяем W 4 – сопротивление движению бульдозера с трактором:

W 4 =G∙f (5.5)

Где G = 59455∙9,8 = 582659 (Н) - сила тяжести бульдозера, Н; f=0,12 – удельное сопротивление движению бульдозера.

W 4 = 582659∙0,12=69919


Свободную силу тяги определяем по формуле (5.6)

Т = Т сц - (W 2 + W 3 + W 4) (5.6)

Т = 524393 – (149,79+61,37+69919) = 454262

Запас тягового усилия по мощности определяем по формуле (5.7)

Т = Т N - (W 2 + W 3 + W 4) (5.7)

Т = 304363 – (149,79+61,37+69919) = 234233

Для дальнейших расчетов принимаем меньшее значение запаса тягового усилия Т min = 234233

Расчетную глубину резания в конце набора грунта определяем по формуле (5.8)

где W 1 – сопротивление грунта резанию (принимаем равным Т min = 234233)

C min =

Максимальную глубину резания по формуле (5.9)


C max =

Определяем среднюю толщину срезаемой стружки

Определяем объем грунта в призме волочения:

V пр = l 1 ∙B∙C, (5.11)

где l 1 – длина участка набора грунта, м;

l 1 =

Подставляем значение l 1 в формулу 5.11

V пр = 5∙10 -6 ∙4,53∙520751=12,1м 3

Определяем Т ц – продолжительность цикла, с;

Т ц = t 1 + t 2 + t 3 + t 4 (5.13)


где t 1 – время резания грунта, t 1 =

где t 2 – время перемещения грунта, t 2 = с,

где t 3 – время обратного хода, t 3 = с,

где t 4 – дополнительное время (время на переключение передач и т.д),

Т ц = 146+146+26=317с,

По формуле 5.1 определяем производительность бульдозера

м 3 /час

Производительность бульдозера составляет 21,14 м 3 /час.


Список литературы

1. Г.Г. Воскресенский, Г.И. Декина, В. А. Клюев, Лещинский А.В., Позынич К.П., Шемякин С.А. Строительные и дорожные машины: Лабораторный практикум: 2003 – 89с.

2. Чернявский С.А., Кузнецов Б.С. Проектирование механических передач. Учебно-справочное пособие для вузов – 5-е изд. перериб. и доп. - М.: Химия 1984 – 560 с. ил.

3. Сиденко П.М. Изменение в хим. промышленности. - М.: Химия 1977 – 368 с. ил.

4. Чернилевсий Д.В. Детали машин и механизмов. Учебное пособие - 2-е изд. перероб. и доп. – К.: Выща шк. Головное изд-во 1987г. – 328 с.

5. Батурин А.Т. Цецкович Г.М. Панич.Б. Б. Чернин П.М. Детали машин – 6-е изд. машиностроение – М: 1971 – 467 с.


В условиях нынешних российских стройплощадок не может решаться из-за недостатка этой принципиальной важной предпосылки. Подтверждением чему служит то обстоятельство, что подавляющее большинство строительных машин и механизмов классифицируется по признакам рода выполняемой работы, режима работы и степени универсальности. Иначе говоря, речь идет о механизации конкретных трудовых операций (в том...

В том числе скважин для изготовления буронабивных свай. Рыхлители служат для рыхления мерзлых грунтов и пород, которые не могут разрабатываться обычными машинами для земляных работ, экскаваторами, бульдозерами, скреперами. Одноковшовые строительные экскаваторы могут разрабатывать грунты с удельным сопротивлением копанию k1=0,5МПа, а многоковшовые с k1=0,8МПа. Бульдозеры и скреперы могут...

По конструкции разделяются на машины с бортовым поворотом или с шарнирно сочлененной рамой. В мини-погрузчиках широко используется как гидромеханическая трансмиссия, так и специализированный гидрообъемный привод в механизмах привода хода и в механизмах рабочего оборудования. Малогабаритными строительными машинами считаются погрузчики массой до 7,4 т, грузоподъемностью до 1,5 т, с двигателем...

ПРИ РАЗРАБОТКЕ И ПЕРЕМЕЩЕНИИ ГРУНТА

Цель работы: определить производительность бульдозера при разработке и перемещении грунта с учетом тягово-сцепных характеристик гусеничного трактора.

На базовой машине, гусеничном тракторе 3 (рис. 2.1) могут быть установлены бульдозерное 1 и рыхлительное 5 оборудование. Для изменения положения навесного рабочего оборудования служат гидроцилиндры 2 и 4 .

Рис. 2.1. Навесное оборудование бульдозера

Производительность бульдозера П, м 3 /ч, при разработке и перемещении грунта:

(2.1)

где: - ширина призмы грунта впереди отвала, м;

Длина и высота отвала, м;

Угол естественного откоса грунта в движении, град;

Коэффициент, учитывающий потери грунта, принимается равным ;

Дальность перемещения грунта, м,

Число циклов за 1 час работы;

- продолжительность цикла, с;

Время резания грунта, с;

Длина пути резания (обычно 6.. 15 м);

Скорость движения трактора при резании грунта, м/с;

Время перемещения грунта, с;

Путь перемещения грунта, м;

Скорость движения трактора при перемещении грунта, м/с;

- время об­ратного хода трактора, с;

Скорость движения трактора при об­ратном его ходе, м/с;

Дополнительное время, с (в дополнительное входит время на переключение скоростей до 5 с, на подъем и опускание отвала до 4 с, на разворот трактора до 10 с, на распределение грунта и др.);

Коэффициент разрыхления грунта, т.е. отношение объема рыхлого грунта к объему того же грунта в плотном теле (1,12 - для песчаных; 1,22 - для суглинистых; 1,3 - для глинистых грунтов).

Скорость движения трактора (табл. 2.1) зависит от сопротивлений, возникающих при работе бульдозера.

Усилие, которое необходимо преодолеть трактору при работе с бульдозером:

где: W 1 - сопротивление грунта резанию:

, (2.3)

где: b - длина отвала, м;

- угол поворота отвала в плане относительно оси трактора, град;

с - толщина срезаемого слоя, м;

k - коэффициент сопротивления грунта резанию для бульдозеров;

W 2 - сопротивление волочению призмы грунта впереди отвала:

(2.4)

где - угол естественного откоса грунта(= 40...45°);

- плотность грунта;

- ускорение свободного падения;

- ко­эффициент трения грунта по грунту (0,4...0,8, причем меньшие значения берут для влажных и глинистых грунтов);

- уклон пу­ти,

W 3 - сопротивление трению грунта по отвалу:

где: δ - угол резания (50...55°);

µ" - коэффициент трения грунта по стали (µ" =0,7...0,8 для глины; µ" =0,5...0,6 - для суглинка и супеси; µ" =0,35...0,5 - для песка);

W 4 - сопротивление движению бульдозера с трактором:

(2.6)

где G - вес бульдозера с трактором;

ω 0 - удельное сопротивление движению (0,15 - 0,12, меньшее для плотных грунтов).

Машины находятся в движении без пробуксовывания при условии, что сцепная сила тяги больше окружного усилия на ободе ведущего колеса (звездочки) и больше общего сопротивления передвижению.

Тяговое усилие, развиваемое трактором:

(2.6)

где: - мощность двигателя;

- КПД трансмиссии;

- скорость передвижения.

Сила тяги по сцеплению:

где: - сцепной вес машины;

- коэффициент сцепления.

Условие движения без буксования:

Объем грунта в призме волочения:

(2.9)

Порядок выполнения работы

Определить производительность бульдозера при разработке и перемещении грунта. Исходные данные принять по таблице 2.3 согласно номеру варианта, заданного преподавателем.

Таблица 2.1. Основные параметры гусеничных тракторов

Показатель ДТ-75 Т-75 Т-4А Т-100М Т-130
Марка двигателя СМД-14 Д-75 А-01М Д-10 Д-160
Мощность двигателя, кВт
Тяговый класс
5; 5,58; 6,21; 6,9; 7,67 2,14...10,6 3,47; 4,03; 4,66; 5,2; 6,35; 7,37; 8,53; 9,52 2,36; 3,78; 4,5; 6,45; 10,15 3,7; 4,4; 5,13; 6,1; 7,44; 8,87; 10,27; 12,2
3,42...4,28 1,76...5,86 4,69; 5,47; 6,34; 7,04 2,79; 4,46; 5,34; 7,61 3,56; 4,96; 7,14; 9,9
Габариты, мм
длина
ширина
высота
Масса трактора, т 5,26 5,9 12,1

Продолжение таблицы 2.1

Показатель Т-180 ДЭТ-250 Т-220 Т-330 Т-500
Марка двигателя Д-180 В-ЗОВ ДВ-220 8ДВТ-330 12ДВТ-500
Мощность двигателя, кВт
Тяговый класс
Скорость движения вперед, км/ч: 2,86; 5,06-6,9; 9,46; 13,09 Рабочая 2,3...15; Транспорт. 3,5...24,5 0...17,6 0...16,4 0...16,2
Скорость движения назад, км/ч: 3,21...8,19 То же 0...14,6 0...13,7 0...13.5
Габариты, мм
длина
ширина
высота
Масса трактора, т 14,35

В качестве примера определим производительность бульдозера при разработке и перемещении грунта. Исходные данные: трактор Т-130, длина отвала b = 3,2 м, высота отвала h = 1,3 м. Масса трактора с навесным оборудованием т = 17280 кг. Разрабатываемый грунт - плотный суглинок γ = 1700 кг/м 3 . Место работы - горизонтальная площадка. Отвал перпендикулярен оси трактора α = 90°.

Тяговое усилие, развиваемое трактором при N дв = 118 кВт, η = 0,8 и скорости движения v = 3,7 км/ч =1,03 м/с:

Сила тяги по сцеплению (формула 2.7) при движении бульдозера по плотному грунту (φ = 0,9):

Сопротивление волочению призмы грунта впереди отвала на горизонтальной площадке при φ = 40°, α = 90° и µ =0,4 по формуле (2.4):

Сопротивление от трения грунта по отвалу по формуле (2.5):

Сопротивление движению бульдозера по формуле (2.6):

Свободная сила тяги (запас тягового усилия) по сцепному весу:

По мощности:

Для дальнейших расчетов следует принимать меньшее значение. Расчетная глубина резания (толщина стружки грунта) из формулы (2.3):

Для разрабатываемого грунта - плотного суглинка k = 0,14МПа (по табл. 2.2).

В конце набора грунта

В начале копания, когда все тяговое усилие расходуется только на резание грунта и перемещение бульдозера, свободная сила тяги:

Отвал бульдозера может быть опущен на глубину:

Таблица 2.2. Значения удельных сопротивлений грунта резанию и копанию, МПа

Наименование грунта Категория Объемная масса в плотном теле, кг/м 3 Коэффициент разрыхления Удельное сопротивление грунта резанию
нож бульдозера нож скрепера
Песок рыхлый, сухой I 1200...1600 1,05...1,1 0,01...0,03 0,02...0,04
Песок влажный, супесь, суглинок разрыхленный I 1400...1800 1,1...1,2 0,02...0,04 0,05...0,1
Суглинок, средний и мелкий гравий, легкая глина II 1500...1800 1,15...1,25 0,06...0,08 0,09...0,18
Глина, плотный суглинок III 1600...1900 1,2...1,3 0,1...0,16 0,16...0,3
Тяжелая глина, сланцы, суглинок со щебнем, гравием IV 1900...2000 1,25...1,3 0,15...0,25 0,3,..0,4
Сцементировавшийся строительный мусор, взорванная скальная порода V 1900...2200 1,3...1,4 0,2...0,4 -

Средняя толщина срезаемого слоя:

Длина участка набора грунта:

Выбираем скорости движения на участках: набора грунта =3,7 км/ч, транспортирования =4,4 км/ч, движения задним ходом =4,96 км/ч.

Продолжительность элементов цикла:

где: l 1 , - длина участка;

Скорость движения машины.

Продолжительность набора грунта:

Продолжительность транспортирования грунта:

Продолжительность движения задним ходом:

Т-130 Суглинок, γ=1700 кг/м 3 4,5 1,55 ДЭТ-250 Глина, γ=1900 кг/м 3 3,64 1,23 Т-180 3,2 1,2 Т-100М 4,0 1,35 Т-220 Глина, γ=1800 кг/м 3 4,3 1,4 Т-330 4,5 1,6 Т-500 2,5 0,8 Т-4А Суглинок плотный, γ=1800 кг/м 3 3,3 1,3 Т-130 Песок влажный, γ=1800 кг/м 3 4,4 1,5 ДЭТ-250 Песок сухой, γ=1600 кг/м 3 3,5 1,2 Т-180 Суглинок, γ=1700 кг/м 3 3,3 1,3 Т-100М Глина, γ=1900 кг/м 3 3,8 1,3 Т-220 Суглинок плотный, γ=1800 кг/м 3 4,2 1,3 Т-330 Песок влажный, γ=1800 кг/м 3 4,4 1,5 Т-500 Глина, γ=1800 кг/м 3 2,4 0,8 Т-4А Суглинок плотный, γ=1800 кг/м 3 3,4 1,35 Т-130 Песок влажный, γ=1800 кг/м 3 4,35 1,45 ДЭТ-250 Плотный суглинок, γ=1900 кг/м 3 3,4 1,25 Т-180 Тяжелая глина, γ=2000 кг/м 3

Контрольные вопросы

1. Как определяется производительность бульдозера при разработке и перемещении грунта?

2. Что такое призма волочения? Ее основные размеры?

3. Что такое коэффициент разрыхления грунта? От чего он зависит?

4. Из каких сопротивлений состоит усилие, которое необходимо преодолеть трактору при работе с бульдозером?

5. Что представляет условие движения без буксования?

6. Как можно определить расчетную глубину резания (толщина стружки грунта)?

7. Из каких элементов состоит рабочий цикл бульдозера? Как определяется продолжительность элементов цикла?

8. Каким образом учитываются потери грунта при перемещении бульдозером?


Лабораторная работа №3


Техническая производительность бульдозера при резании и перемещении грунта, м 3 /ч, определяется по формуле

П Т = 3600 V пр К У К С / Т Ц, (2.21)

Где V ПР – геометрический объем призмы волочения грунта (в плотном теле), м 3 ;

V ПР = 0,5 L H 2 / ctg φ o K p , (2.22)

Где L, H – соответственно длина и высота отвала; φ о – угол естественного откоса при перемещении материала (среднее значение φ о = 30°; ctg φ o = 1,73); К Р – коэффициент разрыхления грунта (для грунта 1-й группы равен 1,1; 2-й группы – 1,2; 3-й группы – 1,3); К У – коэффициент, учитывающий влияние уклона местности (табл. 2.22); К С – коэффициент сохранения грунта при его транспортировке:

К С = 1 – 0,005 S в, (2.23)

где S в – дальность перемещения (возки) грунта, м; Т Ц – продолжительность цикла, с:

Т Ц = S p / v p + S B / v B + S 0 / v o + Σ t, (2.24)

где S P , S B , S O – длина соответственно пути резания, возки грунта и обратного хода, м; S O = S P + S B ; v P , v B , v O – скорость трактора при резании, перемещении грунта и обратном ходе, м/с, (табл. 2.23); Σt – время на переключение передачи, опускание отвала, остановки в начале и конце рабочего хода и др. вспомогательные операции (в среднем Σ t = 15…20 с).

Длина пути резания грунта

S p = V пр / L h c (2.25)

где V ПР – объем призмы волочения грунта, м 3 ; L – длина отвала бульдозера, м; h С – толщина срезаемого слоя грунта, м, (табл. 2.23).

Таблица 2.22

Влияние уклона местности на производительность бульдозера

Таблица 2.23

Основные технологические параметры работы бульдозера


Группа

грунта


Тяговый

бульдозера


Толщина

грунта, см


Скорость, м/с, при

резании

грунта


груженом ходе

обратном ходе

I

1,4…4

18,5

0,7

1,1

2,0

6…15

25

0,75

1,2

2,5

25…35

35

0,76

1,0

2,1

II

1,4…4

17,5

0,65

1,0

2,0

6…15

22

0,7

1,1

2,5

25…35

31

0,74

0,9

2,1

III

1,4…4

12,5

0,5

0,7

2,0

6…15

18

0,65

1,0

2,5

25…35

27

0,72

0,8

2,1

Среднечасовая эксплуатационная производительность бульдозераравна:

П Э = П Т К В, (2.26)

где К В – коэффициент использования машины по времени в течение смены: К В = 0,8 – при мощности бульдозера до 200 кВт; К В = 0,75 – при мощности свыше 200 кВт.

2.5.2. Бульдозеры-рыхлители

В целях совмещения в бульдозере землеройно-транспортной и рыхлительной машины, что расширяет область ее применения в различных грунтовых и погодно-климатических условиях, на задний мост базового гусеничного трактора навешивают рыхлительное оборудование (рис. 2.10).

Рыхлительное оборудование состоит из навесного устройства в виде рамы 1, системы тяг 2, рабочей балки 4, обеспечивающих ориентированную подвижность и фиксированные положения рабочих органов – зуба с наконечником 7 (или нескольких зубьев) в пространстве с использованием гидроцилиндров 3. Навесное оборудование монтируют на базовом тракторе посредством опорных элементов: рам, балок, кронштейнов, жестко закрепленных на корпусе заднего моста.

Рис. 2.10. Бульдозер-рыхлитель

1 – рама; 2 – тяга; 3 – гидроцилиндры; 4 – балки; 5 – буфер;

6 – флюгерное устройство; 7 – зуб с наконечником

Конструктивные и классификационные отличия современных рыхлителей обусловлены тяговым классом и ходовым устройством базового трактора, назначением рыхлителя, видом его навесного устройства, способом установки, числом зубьев и их креплением (табл. 2.24).

Таблица 2.24

Классификация рыхлителей

Главным классификационным параметром рыхлителя, определяющим типоразмер, является тяговый класс базового трактора. Техническая характеристика бульдозеров-рыхлителей приведена в табл. 2.25.

Таблица 2.25

Техническая характеристика бульдозеров-рыхлителей


Индекс

Базовый трактор

Масса, т

марка

класс

мощность,

оборудование

машины

общая


бульдозер

рыхлитель

Б10М.0100

Т-10М

10

132

2,51

1,72

18,24

ЧЕТРА-11

Т-11.01

11

123

2,4

1,0

20,0

Т-15.01

Т-15.01

15

176

3,11

3,575

28,0

Т-20.01

Т-20.01

20

206

4,3

3,575

36

ТМ-25.01

ТМ-25.01

25

279

6,95

4,6

50,98

ДЭТ-320

ДЭТ-250М2

25

258

5,2

4,28

45,0

ДЭТ-250М

2Б1Р1


ДЭТ-250М2

25

237

6,2

3,95

41,34

Т-35.01

Т-35.01

35

353

8,95

6,12

61,55

Т-50.01

Т-50.01

50

550

12,0

12,5

95,5

Т-75.01

Т-800

75

603

16,295

11,2

106

Число зубьев рыхлителей принимают один, три или пять в зависимости от назначения и типоразмера машины. На тракторах мощностью до 100 кВт используют три – пять зубьев рыхлителя для вспомогательных работ при разрушении плотных немерзлых грунтов. При разработке мерзлых и разборно-скальных грунтов на тракторах мощностью свыше 100 кВт устанавливают один – три зуба.

Рабочий цикл рыхлителя состоит из следующих операций: опускание зубьев рыхлителя и их заглубление в грунт, рыхление грунта, выглубление зубьев рыхлителя, возвращение машины в исходное положение холостым ходом. Объем разработанного грунта зависит от глубины рыхления, числа зубьев и расстояния между ними.

Техническая производительность бульдозера-рыхлителя , м 3 /ч, при рыхлении грунта определяется по формуле

П Т = 3600 Q / Т Ц, (2.27)

Где Q – объем грунта, разрыхленного за цикл, м 3 ; Т Ц – продолжительность цикла, с:

Q = B h CP s, (2.28)

Где В – средняя ширина полосы рыхления, зависящая от числа, шага и толщины зубьев, угла развала (15…60°) и коэффициента перекрытия (0,75…0,8) резов, м; h ср – средняя глубина рыхления в данных грунтовых условиях, м; s – длина пути рыхления, м.

При челночной схеме работы рыхлителя

Т Ц = s / v p + s / v x + t c + t o , (2.29)

Где v p , v x – скорости движения машины соответственно при рыхлении и холостом ходе, м/с; t c = 5 c – среднее время на переключение передач; t o = 2…5 c – среднее время на опускание рыхлителя.

При круговой схеме работы рыхлителя к времени цикла добавляется продолжительность разворотов машины в конце участка (два разворота) и исключается время холостого хода.

2.5.3. Контрольные вопросы к разделу 2.5

1. Для чего предназначены бульдозеры? Какие виды работ они могут выполнять? Приведите классификацию бульдозеров.

2. Из каких частей и сборочных единиц состоит бульдозер?

3. Назовите типы и охарактеризуйте принципы действия рабочего оборудования бульдозера.

4. Как устроен и как работает бульдозер с неповоротным и поворотным в плане отвалом?

5. Какими сменными рабочими органами оборудуют бульдозеры? Каково их назначение?

6. Какими способами разрабатывают грунт бульдозером? При каких условиях челночная схема работы бульдозера производительней работы с разворотами на концах захватки?

7. Как определяют техническую производительность бульдозера при разработке грунта в выемках и резервах?

8. Какими мерами снижают потери грунта при его перемещении бульдозером? Какие другие приемы используют для повышения производительности бульдозера?

9. Какие задачи решаются благодаря использованию автоматических систем управления работой бульдозера? Какими типовыми системами автоматического управления оснащаются отечественные бульдозеры?

10. Как устроен рыхлитель? Для чего предназначены бульдозеры-рыхлители?

11. Перечислите состав рабочих операций бульдозера-рыхлителя и способы их выполнения.

12. Как определяют техническую производительность бульдозера-рыхлителя при послойном рыхлении грунта? Какие технологические схемы используются при работе рыхлителя?

2.6. Автогрейдеры

2.6.1. Общая характеристика автогрейдеров

Автогрейдер – самоходная землеройно-транспортная машина с ножевым рабочим органом для профилировочных и точных планировочных земляных работ (рис. 2.11). Рабочим органом автогрейдера является грейдерный отвал с ножами, укрепленный на поворотном круге под тяговой рамой в средней части машины между передними и задними колесами. При движении автогрейдера ножи срезают грунт, и отвал, установленный под углом к продольной оси машины, сдвигает его в сторону.


Рис.2.11. Автогрейдер с кирковщиком

1 – кирковщик; 2 – гидроцилиндр кирковщика; 3 – отвал; 4 – рама;

5 – гидроцилиндр отвала; 6 – колеса; 7 – кабина; 8 – карданный вал;

Подвеска отвала в большинстве случаев допускает его вращение вокруг трех ортогональных осей и поступательное перемещение вдоль собственной продольной оси. Таким образом, отвал может поворачиваться в горизонтальной плоскости на 360° в любом направлении, становиться вертикально справа и слева от машины, выдвигаться вправо и влево более чем на треть своей длины и поворачиваться вокруг своей режущей кромки. При необходимости отвал дооборудуют специальными приставками, например для одновременной планировки подошвы и откоса насыпи, верха и откоса выемки и т.д.

Грейдерный отвал – основной, но не единственный рабочий орган машины. Как правило, автогрейдер оборудуется ещё одним постоянным рабочим органом: бульдозерным отвалом, устанавливаемым перед машиной; кирковщиком, размещаемым перед передними колесами (рис. 2.11), сразу за ними или за грейдерным отвалом; рыхлителем, располагаемым в задней части машины. Дополнительный рабочий орган предназначен для выполнения вспомогательных рабочих операций и обеспечивает бесперебойное использование основного рабочего органа.

Автогрейдеры имеют общую компоновочную схему, при которой двигатель и кабина расположены в задней части машины, а отвал с механизмом выноса – в средине колесной базы. По конструктивному исполнению ходовых устройств они бывают двухосными (рис. 2.11) и трехосными (рис. 2.12). Особенности конструкции ходового устройства отражаются колесной формулой , которая записывается как АхБхВ, где А, Б и В – число осей, соответственно управляемых, ведущих и общее. Например, трехосная машина с двумя ведущими (задними) осями и передней осью с управляемыми колесами имеет формулу 1х2х3. Автогрейдеры этой формулы получили наибольшее распространение в строительстве.

Автогрейдеры классифицируют по следующим основным признакам: по классу, мощности двигателя, конструкции рабочего органа, колесной формуле, типу трансмиссии (табл. 2.26).

Таблица 2.26

Схема классификации автогрейдеров

Для обозначения автогрейдеров, как и других землеройно-транспортных машин, принят буквенный индекс – ДЗ. Цифровая часть индекса соответствует номеру, который присваивается при регистрации новой машины (например, ДЗ-98). При модернизации машины прибавляют букву в алфавитном порядке (например, ДЗ-98В.1). Порядковая цифра (.1) означает модификацию машины). После 1991 г. некоторые заводы используют другие системы индексации (табл. 2.27).

Практически все современные автогрейдеры оборудуются системами автоматического управления, основной функцией которых является сохранение заданной ориентации грейдерного отвала в пространстве. В зависимости от модификации машины используются системы «Профиль – 10», «Профиль – 20» и «Профиль – 30». САУ «Профиль –10» предназначена для автоматического обеспечения заданного углового положения отвала автогрейдера с гидравлическим управлением в поперечной плоскости независимо от поперечного профиля земляного полотна и применяется при окончательной отделке (планировке) поверхностей. САУ «Профиль – 20» включает в себя два канала управления: стабилизации углового положения отвала в поперечном направлении и высотного положения отвала относительно жесткой направляющей (копира).

Аппаратура второго поколения (базовый комплект «Профиль – 30» ) включает в себя САУ «Профиль – 20», дополнительно оборудованную подсистемой стабилизации заданного курса движения автогрейдера. Основные элементы САУ «Профиль – 30» показаны на рис. 2.12.


Рис. 2.12. Основные элементы САУ "Профиль-30"

1 – бортовой аккумулятор; 2 – пульт управления; 3 – гидрозолотники;

4 – датчик угла (ДКБ); 5 – датчик курса;

6 – датчик высотного положения отвала (ДЩБ); 7 – копирная проволока

В рассматриваемые САУ включены также подсистемы, обеспечивающие защиту двигателя от перегрузок за счет регулирования частоты вращения коленчатого вала.

2.6.2. Производительность автогрейдера

Способ расчета производительности автогрейдера зависит от вида выполняемой им работы.

При возведении земляного полотна техническая производительность автогрейдера определяется как

П т = 60 L sin ά H 2 / tg φ K p (S 1 /v 1 + S 2 /v 2 + t o + t п), (2.30)

Где L – длина отвала, м; H – высота отвала, м; ά – угол установки отвала (угол захвата) при резании грунта (табл. 2.28); φ – угол внутреннего трения грунта; K p – коэффициент разрыхления грунта: S 1 – длина пути зарезания (резания) грунта, м; S 2 – длина пути холостого хода, м; v 1 , v 2 – соответствующие скорости автогрейдера, м/мин.; t o – время на опускание и подъем отвала (0,06…0,07 мин.); t п – время на переключение передач за один цикл (0,08…0,09 мин.).

Коэффициент использования автогрейдера в течение смены при разработке грунта принимается равным 0,7…0,75.

Таблица 2.27

Техническая характеристика автогрейдеров

При производстве планировочных работ техническая производительность

П т = 1000(L sin – b) v / n, (2.31)

Где L – длина отвала, м; – угол установки отвала в плане (табл. 2.28); b – ширина перекрытия смежных полос планировки (0,3…0,5 м); v – скорость движения при планировке, км/ч, (обычно принимается 1-я скорость); n – необходимое число проходов: при ручном управлении 4-10; при автоматическом управлении 2-4.

Операция


Угол установки

отвала, град.


захвата ()

резания (δ)

Зарезание грунта без предварительного рыхления

40…45

30…35

Зарезание грунта с предварительным рыхлением

30…40

35…45

Перемещение влажного грунта

40…50

30…40

Перемещение сухого грунта

35…45

35…45

Планировка верха земляного полотна

45…60

35…45

Планировка откосов

60…65

40…45

Коэффициент использования автогрейдера в течение смены при планировочных работах принимается равным 0,8.

2.6.3. Контрольные вопросы к разделу 2.6

1. Для чего предназначены автогрейдеры? Какие виды работ они могут выполнять? Укажите область эффективного использования автогрейдеров в железнодорожном строительстве.

2. Приведите общую классификацию автогрейдеров. Какова структура колесной формулы автогрейдера? Какие автогрейдеры (с какой колесной схемой) наиболее распространены в строительстве?

3. Как устроен и как работает автогрейдер? Каким образом обеспечивается планировочная способность автогрейдера?

4. Назовите технологические схемы работы автогрейдера. При каких условиях они реализуются?

5. Какие задачи решаются благодаря использованию систем автоматического управления (САУ) автогрейдером? Какие типы САУ используются на автогрейдерах?

6. Перечислите основные элементы САУ и объясните принципы их работы.

7. Как определяют техническую и эксплуатационную производительность автогрейдера при выполнении им разных видов работ?

2.7. Машины и оборудование для уплотнения грунта

2.7.1. Общая характеристика машин для уплотнения грунта

Машины и оборудование для уплотнения грунтов предназначены для восстановления плотности и прочности грунтов, уложенных в земляные сооружения, придания им необходимой устойчивости, несущей способности и водонепроницаемости.

Грунты уплотняют слоями одинаковой толщины, для чего отсыпанный грунт разравнивают бульдозерами или грейдерами. Толщина разравниваемых слоев зависит от условий производства работ, вида грунта и технической характеристики уплотняющих машин и оборудования.

Послойное уплотнение грунта осуществляется укаткой, трамбованием, вибрированием и комбинированным воздействием. Грунтоуплотняющие машины позволяют использовать все способы уплотнения грунтов.

При укатке уплотнение грунта происходит в результате давления, создаваемого вальцом или колесом на поверхности уплотняемого слоя.

При трамбовании грунт уплотняется падающей массой, обладающей в момент встречи с поверхностью грунта определенной скоростью.

При вибрировании уплотняемому слою грунта сообщаются колебательные движения, которые приводят к относительному смещению частиц и более плотной их укладке.

Комбинированные способы уплотнения грунта – виброукатка и вибротрамбование.

Обобщенная характеристика грунтоуплотняющих машин и оборудования приведена в табл. 2.29.

Таблица 2.29

Схема классификации грунтоуплотняющих машин и оборудования

Машины и оборудование для уплотнения грунтов

Воздействие на грунт


Статическое

Динамическое

Комбинированное

Способ уплотнения


Укатка

Трамбование

Вибрирование

Укатка + вибрирование

Вибрирование + трамбование

Способ перемещения рабочего органа


Прицепной

Самоходный

Полуприцепной

Навесной

С помощью импульсных реактивных сил

Вид оборудования


Катки статического действия

Виброкатки

Трамбовочные машины

Вибротрамбовочные машины

Виброплиты

Тип вальца катка


Гладковальцовый

Кулачковый

Решетчатый

Сегментный

пневмоколесный

Грунтоуплотняющим машинам присваивается индекс , состоящий из букв ДУ и двух цифр, после которых иногда следует порядковая буква (А, Б, В и т.д.) или порядковая цифра (, 2, 3 и т.д.). Буквы ДУ указывают, что машина относится к группе дорожных машин для уплотнения грунта. Две цифры в индексе – порядковый номер заводской модели. Буквами А, Б, В, Г и т.д. обозначают очередную модернизацию машины. Например, индекс ДУ–16Г расшифровывается так: ДУ – дорожная машина для уплотнения грунта; 16 – заводской номер модели; Г – четвертая модернизация 16-й заводской модели. В последнее время вместо букв для обозначения модернизации используют также цифры, например, ДУ-70-1; ДУ-85-1.

В железнодорожном строительстве наиболее распространены прицепные и полуприцепные пневмоколесные катки, прицепные кулачковые, решетчатые и вибрационные катки, а также грунтоуплотняющие машины ударного и виброударного действия.

Пневмоколесный каток состоит из четырех-пяти пневматических колес и одного или нескольких (по числу колес) балластных ящиков. В последнем случае ось каждого колеса крепится к днищу соответствующего балластного ящика так, что в зависимости от неровностей укатываемой поверхности с грунтом контактирует все колеса катка. В качестве балласта используют чугунные отливки или железобетонные блоки, с помощью которых можно существенно увеличить массу катка. Прицепные пневмоколесные катки работают в сцепе с гусеничными тракторами. Полуприцепные и самоходные пневмоколесные катки, представляют собой самоходные агрегаты, состоящие из одноосных колесных тягачей и соединенных с ними хоботами одноосных катков с колесами на пневматических шинах.

Прицепные кулачковые катки работают в сцепе с гусеничным трактором. Это весьма эффективные машины. Однако их применяют лишь на связных грунтах, так как на несвязном грунте происходит выброс грунта кулачками вверх, вследствие чего уплотняемый слой разрыхляется.

Решетчатые и сегментные катки можно применять для уплотнения комковатых и переувлажненных связных грунтов, а также разрыхленных мерзлых и скальных крупнообломочных грунтов.

Вибрационные катки выпускают с гладкими, кулачковыми или решетчатым вальцом, внутри которого вмонтирован вибратор направленных колебаний. Вибратор приводится в движение от автономного двигателя, установленного на раме катка. Максимальный эффект при использовании виброкатков достигается при уплотнении увлажненных песчаных, супесных, гравийно-песчаных и других несвязных грунтов.

В стесненных условиях грунт можно уплотнять самопередвигающимися виброплитами . Площадь рабочей поверхности такой плиты 0,5…2 м 2 , толщина уплотняемого слоя несвязного грунта до 0,6 м.

К трамбовочным машинам относятся навесные трамбовочные плиты на экскаваторах, трамбовочные машины с падающими плитами и дизель-трамбовками на базе гусеничного трактора. К числу основных преимуществ этих машин относится возможность уплотнять связные и несвязные грунты слоями до 1 м и более. Тем не менее они не нашли широкого применения в транспортном строительстве, так как установки со свободно падающими плитами тихоходны, а машины с дизель-трамбовками эффективны только на предварительно уплотненных грунтах.

Вибро-трамбовочные машины представляют собой навесное оборудование на самоходной машине на базе гусеничного трактора. Рабочее оборудование состоит из двух вибромолотов, получающих привод от гидромотора-редуктора через двухступенчатую клиноременную передачу. Удары вибромолотов передаются на трамбующую плиту, создавая эффект трамбования и вибрирования. Подвеска трамбующей плиты позволяет перемещать ее в поперечном направлении на 0,5…0,7 м от следа базового трактора с целью уплотнения бровочной части насыпи с соблюдением требований техники безопасности.

В табл. 2.30 приведены технические характеристики некоторых моделей отечественных грунтоуплотняющих машин.

Таблица 2.30

Техническая характеристика машин для уплотнения грунтов


Индекс

Масса, т

Скорость,

км/ч


Ширина

уплотнения, м


без балласта

с балластом

Прицепные кулачковые и решетчатые катки

ДУ-2

ЗУР-25


9,2

17,6

0-3

4

Прицепные пневмоколесные катки

ДУ-4

ДУ-39Б


5,65

25

0- 5

2,5

Полуприцепные пневмоколесные катки

ДУ-16В

ДУ-74


25,4

35,9

0-40

2,6

Самоходные пневмоколесные катки

ДУ-29

ДУ-100


23

30

0-23

2,22

Самоходные вибрационные (комбинированные) катки

ДУ-52

ДУ-99


16


0-10,8

2,0

Прицепной вибрационный каток

А-4

3,8


по

1,5

ЗЕМЛЕРОЙНО-ТРАНСПОРТНЫЕ МАШИНЫ

На базовой машине, гусеничном тракторе 3 (рис. 1.1), может быть установлено бульдозерное 1 и рыхлительное 5 оборудование. Для изменения положения навесного рабочего оборудования служат гидроцилиндры 2, 4.

Рис. 1.1. Навесное оборудование бульдозера и рыхлителя

на гусеничном тракторе

Производительность бульдозера, м 3 /ч, при разработке и перемещении грунта определяется по формуле

, (1.1)

где ширина призмы грунта впереди отвала, м;

– длина и высота отвала, м;

– угол естественного откоса грунта в движении, град;

– коэффициент, учитывающий потери грунта, принимается равным 1-0,005L;

– дальность перемещения грунта, м;

– продолжительность цикла, с;

– время резания грунта, с;

– длина пути резания (обычно 6–15 м);

– скорость движения трактора при резании грунта, м/с;

– время перемещения грунта, с;

– путь перемещения, м;

– скорость трактора при перемещении грунта, м/с;

– время обратного хода трактора, с;

– скорость движения трактора при обратном его ходе, м/с;

дополнительное время, с (в дополнительное время входит время на переключение скоростей до 5 с, на подъем и опускание отвала до 4 с, на разворот трактора до 10 с, на распределение грунта и др.);

– коэффициент разрыхления грунта, т.е. отношение объема рыхлого грунта к объему того же грунта в плотном теле (1,12 – для песчаных; 1,22 – для суглинистых; 1,3 – для глинистых грунтов).

Скорость движения трактора (табл. 1.1) зависит от сопротивлений, возникающих при работе бульдозера.

Таблица 1.1

Основные параметры гусеничных тракторов

Модель ДТ-75 Т-75 Т-4А Т-100М Т-130
Марка двигателя СМД-14 Д-75 А-01М Д-10 Д-160
Мощность двигателя, кВт
Тяговый класс
5; 5,58; 6,21; 6,9; 7,67 3,42– 4,28 2,14–10,6 1,76–5,86 3,47; 4,03; 4,66; 5,2; 6,35; 7,37; 8,53; 9,52 4,69; 5,47; 6,34; 7,04 2,36; 3,78; 4,51; 6,45; 10,15 2,79; 4,46; 5,34; 7,61 3,7; 4,4; 5,13; 6,1; 7,44; 8,87; 10,27; 12,2 3,56; 4,96; 7,14; 9,9
3075 1740 2273 4475 1952 2568 4313 2460 3059
Масса трактора, т

Окончание табл. 1.1

Модель ДТ-75 Т-75 Т-4А Т-100М Т-130
Марка двигателя Д-180 В-30 В ДВ-220 8ДВТ-330 12ДВТ-500
Мощность двигателя, кВт
Тяговый класс
Скорость движения, км/ч: вперед назад 2,86; 5,06; 6,9; 9,46; 13,09 3,21– 8,19 Рабочая 2,3–15 Транспортная 3,5–24,5 То же 0–17.6 0–14.6 0–16.4 0–13.7 0–16,2 0–13,5
Габариты, мм: длина ширина высота
Масса трактора, т 13,2

Усилие, которое необходимо преодолеть трактору при работе с бульдозером,

где сопротивление грунта резанию (табл.1.2);

, (1.3)

где длина отвала, м;

угол поворота отвала в плане относительно оси трактора, град;

с – толщина срезаемого слоя, м;

коэффициент сопротивления грунта резанию для бульдозеров;

сопротивление волочению призмы грунта впереди отвала;

, (1.4)

где – угол естественного откоса грунта ();

плотность грунта;

– ускорение свободного падения;

коэффициент трения грунта по грунту ( = 0,4–0,8, причем меньшие значения берут для влажных и глинистых грунтов);

Таблица 1.2

Значение удельных сопротивлений грунта резанию, МПа

Наименование грунта Категория Объемная масса в плотном теле, кг/м 3 Коэффициент раз- рыхления Удельное сопротивление грунта резанию
Нож бульдозера Нож скрепера
Песок рыхлый, сухой I 1200– 1600 1,05–1,1 0,01–0,03 0,02–0,04
Песок влажный, супесь, суглинок разрыхленный I 1400–1800 1,1–1,2 0,02–0,04 0,05– 0,1
Суглинок, средний и мелкий гравий, легкая глина II 1500–1800 1,15–1,25 0,06–0,08 0,09–0,18
Глина, плотный суглинок III 1600–1900 1,2–1,3 0,1–0,16 0,16–0,3
Тяжелая глина, сланцы, суглинок со щебнем, гравием IV 1900–2000 1,25–1,3 0,15–0,25 0,3–0,4
Сцементиро-завшийся строительный мусор, взорванная скальная порода V 1900–2200 1,3–1,4 0,2–0,4 –.

Уклон пути;

сопротивление трению грунта по отвалу

, (1.5)

где –угол резания ();

– коэффициент трения грунта по стали ( = 0,7–0,8 для глины, = 0,5 –0,6 – для суглинка и супеси, =0,35–0,5 -для песка);

– сопротивление движению бульдозера с трактором;

, (1.6)

где – вес бульдозера с трактором;

– удельное сопротивление движению (табл. 1.3).

Таблица 1.3

Удельное сопротивление движению

Машины находятся в движении без пробуксовывания при условии, что сцепная сила тяги больше окружного усилия на ободе ведущего колеса (звездочки) и общего сопротивления передвижению.

Производительность бульдозеров при планировочных работах, м 2 /ч,

, (1.7)

где – скорость движения бульдозера, км/ч;

длина отвала, м;

– угол установки отвала в плане по отношению к продольной оси трактора;

коэффициент, учитывающий перекрытие следов ( =0,8–0,85);

число слоев планирования.

Производительность рыхлителей по объему грунта, подготавливаемого для транспортирования, м 3 /ч,


,
(1.8)

где – скорость движения рыхлителя, км/ч;

глубина рыхления, м;

ширина рыхления одним зубом ( ), причем большие значения соответствуют материалам слоистой структуры с горизонтальным расположением слоев;

– число зубьев;

коэффициент, учитывающий снижение рабочей скорости ( = 0,7–0,8);

– коэффициент, учитывающий уменьшение толщины разрыхляемого слоя грунта ( = 0,6–0,8, причем меньшие значения соответствуют грунтам, образующим крупный скол, глыбы);

число проходов по одному резу;

– число слоев рыхления в поперечных направлениях для подготовки грунта к транспортированию.

Пример 1.1. Определить производительность бульдозера при разработке грунта. Исходные данные: трактор Т-130, длина отвала =3,2 м, высота отвала = 1,3 м. Масса трактора с навесным оборудованием =17280 кг. Разрабатываемый грунт – плотный суглинок = 1700 кг/м 3 . Место работы – горизонтальная площадка. Отвал перпендикулярен оси трактора = 90°;
– КПД трансмиссии.

Решение. Тяговое усилие, развиваемое трактором, =118 кВт (160 л.с.), =0,8 при скорости движения V=3,7 км/ч =1,03 м/с.

Сила тяги по сцеплению .При движении бульдозера по плотному грунту =0,9.

Условие движения без буксования > > .

Сопротивление волочению призмы грунта впереди отвала на горизонтальной площадке при =40 , и по формуле (1.4)

Сопротивление от трения грунта по отвалу по формуле (1.5).

Сопротивление движению бульдозера по формуле (1.6)

Свободная сила тяги (запас тягового усилия) по сцепному весу

По мощности

Для дальнейших расчетов следует принимать меньшее значение. Расчетная глубина резания (толщина стружки грунта) из формулы (1.3)

.

Для разрабатываемого грунта – плотного суглинка =0,14 МПа (по табл.1.2).

В конце набора грунта

.

В начале копания, когда все тяговое усилие расходуется только на резание грунта и перемещение бульдозера, свободная сила тяги

Отвал бульдозера может быть опущен на глубину

.

Средняя толщина срезаемого слоя


.

Объем грунта в призме волочения

.

Длина участка набора грунта

.

Выбираем скорости движения на участках: набора грунта =3,7 км/ч, транспортирования =4,4 км/ч, движения задним ходом =4,96 км/ч. Продолжительность элементов цикла , где l – длина участка;

– скорость движения машины.

Продолжительность набора грунта

.

Продолжительность транспортирования грунта

.

Продолжительность движения задним ходом

.

Дополнительное время на переключение скоростей, разгрузку и распределение грунта t 4 = 30 с. Продолжительность цикла

цикла.

Коэффициент, учитывающий потери грунта,

Производительность бульдозера по формуле (1.1)

Пример 1.2. Определить сменную производительность рыхлителя, подготавливающего грунт для дальнейшей его разработки бульдозером, и время работы бульдозера. Разрабатываемый грунт – глинистые сланцы. Число слоев рыхления , число проходов по одному резу . Базовая машина – трактор Т-100М, число рыхлительных зубьев =3, глубина рыхления =300 мм. Толщина разрабатываемого слоя h=1 м. Форма участка – квадрат. Дальность транспортирования грунта бульдозером L – длина стороны участка. Длина пути набора грунта бульдозером = 12 м. Размеры отвала =3,97 м, h =1 м.

Решение. Скорость трактора =2,36 км/ч. Ширина полосы рыхления ,для сланцев м.

Производительность рыхления по формуле (1.8)

Скорость бульдозера V=2,36 км/ч =0,66 м/с.

Время набора грунта бульдозером

Сменная производительность рыхлителя при коэффициенте использования машины в течение смены .

При толщине разрабатываемого слоя грунта H=1 м, площадь разрабатываемого участка


.

Длина стороны участка .

Время перемещения грунта на второй скорости трактора

.

Время возвращения бульдозера задним ходом

Дополнительные затраты времени .

Продолжительность цикла

Число циклов за один час работы

.

Коэффициент, учитывающий потери грунта при транспортировании,

Производительность бульдозера

Для перемещения разрыхленного грунта потребуется

.

Скреперы

Скреперы – самоходные или прицепляемые к гусеничным тракторам (колесным тягачам) машины, предназначенные для послойной срезки, транспортирования и выгрузки грунта (рис.1.2).

Рабочий процесс – резание и набор грунта, транспортирование к месту укладки, выгрузка и возвращение к месту набора – представляет собой ряд последовательно повторяющихся операций (рис.1.3). Ковш опускается на грунт, врезается в него под действием силы трактора (тягача) или собственного двигателя и снимает слой грунта (I). Наполненный ковш поднимается на ходу в транспортное положение (II) и перемещается к месту выгрузки, которая осуществляется также на ходу путем выталкивания грунта подвижной задней стенкой ковша или путем наклона его днища, а в некоторых моделях – опрокидыванием ковша (III).

Производительность скреперов (м 3 /ч) определяют по формуле

, (1.9)

где – число циклов за 1 ч работы;

– коэффициент наполнения ковша грунтом ( =0,8– 1,2);

коэффициент разрыхления грунта ( =1,1 –1,3);

продолжительность цикла, с;

, (1.10)

где соответственно время набора грунта, груженого хода, разгрузки, холостого хода, с;

продолжительность поворота, переключения передач скоростей и другие затраты времени.

е
д
г
в
б
а

Рис. 1.2. Общий вид самоходного скрепера:

а – самоходный скрепер;

б, в, г, д – схемы соединения с тягачом;

е – скрепер с принудительной загрузкой ковша

скребковым элеватором

Рис.1.3. Цикл работы скрепера

Продолжительность каждого элемента цикла

, (1.11)

где – длина соответствующего участка, м;

скорость движения скрепера на этом участке, м/с.

Длина участка набора грунта

, (1.12)

где геометрическая вместимость ковша скрепера, м 3 ;

ширина срезаемой полосы, м;

с – толщина срезаемого слоя грунта, м.

Набор грунта скрепером производится на участках длиной 12–30 м. Разгружаются скреперы на участках длиной 5–15 м. Скорость движения скрепера зависит от возникающих сопротивлений грунтов и мощности трактора.

Наибольшее усилие, потребное для перемещения скрепера, возникает во время набора грунта. Это усилие определяется по формуле

где а, в, h — геометрические размеры призмы волочения грунта перед отвалом, м (определяются замером в натуре); n — число циклов за час работы, определяемое из выражения:

l 1 — длина пути зарезания для набора необходимого объёма грунта перед отвалом, м (принимается от 6 до 8 м); Ъ — длина перемещения грунта к месту его отсыпки и обратного хода, м; v t v , v 3 — скорости перемещения бульдозера в процессе зарезания грунта, перемещения его к месту отсыпки и обратного хода машины, м/с; t - время, затрачиваемое на переключение передач, опускание и подъём отвала, с (принимается 20-30 с); t - время на разгрузку отвала при отсыпке грунта, с; Кн — коэффициент наполнения геометрического объёма призмы волочения грунта перед отвалом, который принимается: для отвалов без открылок -0,9, для отвалов с открылками — 1,2; Кп — коэффициент потерь грунта при транспортировании его к месту отсыпки, зависящий от дальности перемещения, принимается Кп = l:0,05; Ka — коэффициент использования рабочего времени, принимается 0,85 — 0,90; Кр коэффициент разрыхления грунта, принимается 1,05:1,35; Кукл — коэффициент, учитывающий работу бульдозера под уклон ипи на подъём; при работе под уклон от 0 до 7° Кукл = 1,0:2,0, при работе на подъём от Кукл = 1,0:0,5
Производительность бульдозеров зависит главным образом от использования рабочего времени, что указывает на необходимость стремиться к сокращению простоев, в том числе на технические обслуживания и ремонты, добиваясь высокого коэффициента технической их готовности.
В процессе работы следует добиваться наиболее рациональных способов перемещения (транспортирования грунта), сокращая продолжительность производственного цикла (зарезание грунта, набор его перед отвалом, перемещение к месту укладки, обратный ход), максимально используя возможные скорости машины, а также совмещая операции рабочего цикла: подъём отвала с разгрузкой грунта, опускание отвала с переключением передач и началом движения бульдозера.
Бульдозеры в основном применяют в комплекте с другими машинами: с экскаваторами - для различных планировочных работ (планировка основания котлованов, разравнивания грунта, планировка откосов) ; со скреперами - на планировке основания дорог и т. п. Самостоятельное применение бульдозеры находят на вскрышных, планировочных и зачистных работах.
В настоящее время идет процесс увеличения единичной мощности дорожно-строительных машин, в том числе и бульдозеров. Так, в связи с выпуском Чебоксарским заводом дорожных машин промышленных тракторов Т-220 и Т-330 мощностью 220 и 330 кВт, относящихся по тяговым показателям к классам 25 - 35, промышленность приступила к выпуску бульдозеров с базовыми тракторами указанных марок. На базе трактора Т-330 изготовляются две модели бульдозеров-рыхлителей Д3-59хл с рыхлительным оборудованием ДП-10с и Д3-124хл с рыхлительным оборудованием ДП-29хл (см. табл. 3.4).
Производительность указанных моделей бульдозеров-рыхлителей в 3-4 раза превышает производительность бульдозеров на базовых тракторах классов 6-15.
Современные тенденции увеличения производительности бульдозеров - увеличение единичной их мощности, что не только повышает производительность этих машин, включая выработку на единицу установленной мощности базовой машины (трактора), но и несколько снижает себестоимость бульдозерньгх работ. С этим связано также и увеличение мощности и давления гидропривода управления рабочим органом бульдозера: требуемая мощность гидропривода составляет в среднем 50 % мощности двигателя базовой машины, а давление в системе достигает 20 МПа. Повышенная мощность и давление гидропривода обеспечивают значительное заглубление отвала в грунт, что дает возможность вести разработку более толстыми пластами, тем самым повышать и производительность бульдозеров.
К числу общих мероприятий повышения производительности бульдозеров относятся максимальное использование мощности двигателя базовой машины, а также самой машины на выполнение полезной работы; снижение удельных сопротивлений на перемещение машины (особенно в забое) и на резание разрабатываемых грунтов; своевременное и качественное техническое обслуживание, значительно уменьшающее частоту отказов в работе машины.
К числу особо эффективных методов повышения производительности бульдозеров относится использование уклонов местности разрабатываемых участков, выполняя работу под уклон, обеспечивающую повышение производительности машин в 1,5 раза, а в отдельных случаях в 2 раза.
Следует отметить, что работа бульдозерами на подъём резко сокращает их производительность. Так, при работе на подъём при 15 производительность не превышает 65 % производительности на горизонтальных участках, принятой за 100 %, а при работе на подъём до 30° производительность не будет превышать 35-40 %.
Для повышения производительности бульдозеров каждый машинист должен всемерно сокращать время в отдельных операциях цикла, при зарезании и наборе грунта перед отвалом, при транспортировании грунта к месту его отсыпки (избегая при этом потерь грунта) и при возвращении машины в забой.
Резервами повышения производительности бульдозеров являются уменьшение потерь скоростей рабочего и обратного ходов, увеличение скоростей до возможных для работы значений, уменьшение потерь на маневрирования и остановки в конце рабочих и обратных ходов.
К мероприятиям, повышающим эффективность использования бульдозеров, относится также применение ножей отвала из износостойких сплавов. Так, если в среднем ножи бульдозера при разработке грунтов II и III групп должны меняться через 720-960 ч, а при разработке грунтов IV группы через 480-720 ч, то ножи, изготовленные из износостойких сплавов (с наплавкой твердосплавных материалов), могут меняться через 1500-2000 ч,. т. е. срок службы последних в 2 раза выше, чем первых.
В современных конструкциях бульдозеров обеспечивается возможность увеличивать перекос отвала до 6-12°, чем значительно улучшаются эксплуатационные их показатели (особенно планирующие свойства), соответственно увеличивается и их производительность.
Для более эффективного использования бульдозеров и повышения их производительности промышленность приступила к выпуску машин (в основном на базе гусеничных тракторов Т-130.1.Г-1), которые оснащаются устройством для изменения положения отвала в плане в зависимости от вида и технологии земляных работ. Причем изменение положения отвала обеспечивается машинистом посредством гидпропривода базовой машины, не выходя из кабины трактора.
В ранее применявшихся конструкциях бульдозеров изменение положения отвала в плане выполнялось бульдозеристом вручную, на что затрачивалось (на одну перестановку) не менее 30 мин. Машина при этом простаивала, не выполняя прямых работ, что снижало ее производительность. Применение бульдозеров с указанным выше устройством показало, что при разработке грунтов I-III групп производительность этих машин в среднем на 25 % выше в сравнении с машинами с ручной перестановкой отвала.
На производительность бульдозеров значительное влияние оказывают выбранная форма отвала и принятые угловые его значения. Так, при недостаточной высоте отвала грунт в процессе копания и перемещения пересыпается за его верхнюю кромку, поэтому для устранения потерь грунта, а соответственно и уменьшения производительности бульдозеров отвалы их снабжаются козырьками. При малых значениях угла резания требуется меньше усилий на отделение грунта от основного массива, но затрудняется внедрение ножа отвала в грунт. Угол наклона положения отвала оказывает влияние как на затраты усилий при копании, так и на набор грунта перед отвалом. При меньших значениях этого угла требуется меньше усилий, но при малых углах наклона наблюдается пересыпание грунта через отвал. Кривизна отвальной поверхности также влияет на затраты усилий при копании и наборе грунта перед отвалом; при значительной крутизне отвала требуется больше усилий.
Опытными данными для каждой группы грунтов определены оптимальные углы и другие значения отвала. В среднем указанные значения принимаются: угол резания 45-55°; угол наклона отвала 75°; радиус кривизны отвала - внизу 0,8 H и вверху 1,1 H (высота отвала H принимается в зависимости от мощности базовой машины бульдозера).